Exam, message queues,
notifications,
& step functions

COSC349—Cloud Computing Architecture
David Eyers



COSC349 Exam

* There are now six past papers available...

* Three hours; 100 marks across 8 questions; answer all guestions
* In-person exam

* The 8 questions relate to different topic areas

* Expect some alignment with the lecture structure

* Each question has parts, and potentially subparts:
* |lots of small questions & no “Cloud computing. Explain. (20 marks)”s

* Exam Is on lecture material, not lalbs, or assignments



Answering CO5C349 exam questions

* Marking approach predictable from marks allocated:
* "Describe three reasons for... (6)"'—assume 2 marks per reason

* Structuring answers as bullet points rather than prose is
OK provided that the linking to the question is clear

* Suggest you plan 1o do multiple passes through exam
* Answer guestions you're comfortable with first
* Some questions are intended to be more challenging

COSC349 Lecture 24, 2025 3



Studying for COSC349

* Ensure you can answer the guestions in the learning
objectives presented at the start of each lecture
* This should help highlight the key, core concepfs

* Some of the more detailed lecture material is provided for
completeness, to provide context and for those interested

* (... but some of it Is very technically detailed)

* Come to tutorials It you're unsure about your answers
fo given learning objectives
* I'm very keen to help, but | can’t form your answers for you



Learning objectives

* Understand that cloud applications will usually be bullt
from many different sofftware components & services

* Describe the role in building cloud applications of:
* Notification services, €.g., Amazon’s Simple Notification Service
* Message queuves, €.g., Amazon’s Simple Queueing Service

* [llustrate how Amazon Step Functions provide support
for distributed transactions in cloud applications



Cloud plumbing

* |[dedlly software components are specialised
* Facllitates eftective separation of concerns
* Allows for broadest possible reuse potential
» Scalabllity and elasticity can focus on specific functionality

* But applications need interconnected components
* Want to avoid hard-coding component interactions
* Inferconnections are good monitoring, logging, & audit points
* Often can use discrete messages rather than data streams



Component interaction queuing examples

* Workloads we've seen: synchronous, 1-1 interactions

* Web + DB—web request initiates DB query; render DB response
* S3 + Lambdao—react when a parficular bucket is changed

* Two different, useful types of decoupling are:
* ® have 1-n, e.q., dllocate jobs to a pool of workers

* ® have disconnected targets, e.g., onsite database

* e.g., ensure that retry can occur, but is not sender's problem
* Even within cloud services, batching can boost performance

COSC349 Lecture 24, 2025 /



Message queues and notification services

* Notification services and message queues factor out
INferconnection needs between soffware components

* Nofification services—e.qg., publish/subscribe paradigm
* Publishers publish messages on particular topics
* Subscribers subscribe to those tfopics

* Message queues typically focused on reliable delivery
* Temporary storage of messages is the focus

COSC349 Lecture 24, 2025 3



Message queues: key features

* Common case functionality of message queues Is easy

* Just a buffer between producer(s) and consumer(s)

* ... but butfer needs persistency; high throughput; low latency
* (These requirements usuadlly tfrade off against each other.)

* Message queues often provide further functionality

* Asynchronous delivery—receiver need not be online
* When sending, producer needs not consider receiver’s status
* Reliable delivery—retry after failures

* Dead letter queue (DLQ)—messages go here after max. retries



Amazon Simple Queueing Service (5QS)

* SQS—decouples two applications
* Producer pushes messages iInto a queue
* Consumer pulls messages from the queue
* Push/pullis analogous to pipes in Unix / WINNT OS kernels
* Messages are stored for up to 14 days

* Two queue types, for 64KB ‘chunks’ (US-East-1 pricing)

* Standard—may: deliver duplicates; out of order ($0.40/mil)
* FIFO—no duplicates; first-in-first-out order; slower ($0.50/mil)

COSC349 Lecture 24, 2025



Amazon Simple Notification Service (SNS)

* SNS Is a topic-based publish-subscribe system

* Has multiple subscriber types:
* High-speed: SQS; HTTP(S) POST to web-hooks; AWS Lambdao
* Mobile: emalil; SMS; I0S+Android push notifications

* Fan out to multiple interested subscribers

* Subscribers can set filters on nofifications
* e.g., prefix matching on names; range matching on attributes
* (SNS can then pass filtering close to source, which is optimal)
* Topics can be set to deliver raw data: payload without JSON

COSC349 Lecture 24, 2025 11



Amazon Step Functions

* What it you want to use a workflow with time delays<
* e.g., hotity owner one month after they upload an S3 object
* SQS / SNS can’t help directly: don't support app-level fiming
* Can't usefully use Lambda, as function would run for a month!

* Amazon Step Functions handle this type of use case:
* Track states of execution—you’'re only charged for fransitfions
* Steps In parallel; serial; conditional; relative/absolute delay,...
* Easy Lambda support (doesn’t work in AWS Academy: why<¢)



Distributed transactions

* Typical monolithic application design is DB-backed

* Databases usetully support transactions
* However databases are also a common bofttleneck in designs

* Saga pattern is a common micro-services alternative
* (Actually published in 1987 by Garcia-Molina and Salem)
* Saga is sequence of tasks that are In ‘fransaction’

* Each task must have a compensating action—an ‘undo’
* These must be idempotent: saga rewind might need rerunning

* Amazon Step Functions can orchestrate saga implementation



