Distributed consensus
and integrity checking

COSC349—Cloud Computing Architecture
David Eyers

Learning objectives

* Explain that scale-out design must avoid contention
* Application workflow must be analysed to identify contention

* Describe how atomic broadcast effects coordination

* Must allow coordination to run on multiple servers that can tail
* Tools like Apache ZooKeeper provide app. coordination needs
* ... but this work Is often done for you by cloud providers’ services

* Sketch how Merkle trees allow data integrity checking
* Specitically that they are more efficient than sets of hash values

Scale-out design (recall elasticity lecture)

* Consider software design for issuing concert tickefts

* Assume that a flash crowd of 100,000 customers arrives
* Ticket count and ticket allocations need to be consistent

* Traditional relational DBe Many contending transactions
* Locking will serialise customers’ requests (likely causing fimeouts)

* Try to create designs that avoid contention:
* Allocate batches of tickets to servers; or hash customers to seats
* Note: Increment & decrement of tficket count iIs commutative

COSC349 Lecture 23, 2025 3

Building scale-out systems

* Need to characterise parts of workflow carefully: e.q.,
* Embarrassingly parallel—coordination of workers not required
* Partitionable—workers can be coordinated within parfitions
* Tightly coupled—whole system needs coordination

* Large scale usually needs highly concurrent operation
* Can’'t require serialisation, but typically must be serialisable
* Systems requiring coordination must handle machine failures
* ... also must operate without software race conditions

Challenges / solutions for scale-out systems

* Computers used In data centres are unreliable devices
* Electronic malfunctions: e.g., cosmic radiation bit-flips in RAM
* Software malfunctions: e.g., operating system crashes
* Scaling out over multiple machines: more likely to see failures
* Also, assessment of faillure might be wrong & device recovers

* Use quorum over set of machines: reduce risk of failures
* A set of machines carries out computation redundantly
* Determine that a majority agree before proceeding

* Expensive to maintain redundancy, but its value Is high
COSC349 Lecture 23, 2025 5

Core tool for reliability: atomic broadcast

e Atomic broadcast—all correct instances receive same
set of messages in the same order (AKA total order)

* Total order does not Imply order matches order messages sent
* (Partial order just provides a set of “X Is betore Y clauses)

* Equivalent to distributed consensus: agree on message order

* General async. distributed consensus with faulty nodee

* Proven to be impossible to achieve—Fischer, Lynch, & Paterson
* ... but can make practical systems If requirements are relaxed
* Are synchronous solutions: the ‘Byzantine Generals’ problem

COSC349 Lecture 23, 2025 6

Apache ZooKeeper

» /ooKeeper gives safe, high-performance coordination
* Although technically it is ‘just’ a hierarchical key-value store
* Key protocol: ZooKeeper Atomic Broadcast (ZAB)

* Set of ZK servers maintain in-memory database of all state
* Snapshots written to persistent storage for faster server recovery
* All ZK servers have to know about all other ZK servers

 /ooKeeper developed as part of Yahoo!'s Hadoop
* Hadoop needed to coordinate distributed work being done
* Early developments ran info subtle coordination failures

ZooKeeper’'s guarantees and simple API

* Sequential consistency—clients’ updates are In order
* Atomicity—clients’ updates apply enftirely or not at all

* Single view—all servers provide same view of system
* l.e., cllents can connect to any ZooKeeper server

* Reliable—updates persist once committed
* Timely—all clients’ views up to date within time bound

* Very simple API: create node; delete node; hode
existse; get data; set data; get children; sync

COSC349 Lecture 23, 2025

Establishing integrity of application’s data

* Faillure-free systeme Components—thus data—Is correct
* However this also means no protection from malicious agents

* Consider verifying integrity of files for malicious changes
* Noft sufficiently safe or precise to look at modification times
* Need to look at the contents of the data in the files
* Typical approach: summarise files with a secure hash code

* Special case: checking append-only log of transactions
* Related to distributed ledger technology (DLIT), e.q., blockchain

COSC349 Lecture 23, 2025 9

Merkle trees: a useful type of hash tree

* Consider data divided up into fixed-sized blocks
* (Covered in more detail in COSC312 / COSC412 ...)

* Rather than hashing each block and sending hash list:
* Hash data blocks (leaves), then hash concatenated hashes
* Binary tree proceeds up to the root hash—the handle for dato

* Can quickly check blocks within individual branches

* Do not need to have whole tree: can reconsiruct branch hash

* Then can check if new block is consistent with the root hash
COSC349 Lecture 23, 2025

10

Merkle trees are widely used

* Can verity BitTorrent downloads—the root hash is file ID

* (currently many torrents are actually a flat list of block hashes)
* any malicious block manipulations can be easily detected

* Check integrity of Git repositories—track modifications
* (FYl: some Git data is not profected, e.g., branch pointers)

* Verify state of data in filesystems, e.g., BIRFS and ZFS
* Used In bitcoin’s blockchain system—Ilight clients

* Within NoSQWL DBs: cheaply locate data inconsistencies

Checking consistency of distributed ledgers

* Ledger tracks state of system—e.g., account balances

* Ledgers are typically append-only data structures
* Immutable history is useful widely, such as auditing DB changes...

* State of ledger can be checked effectively using Merkle trees
* Newest transaction block checked against hash free and root hash

* Distributed ledgers (DLT) have multiple coples of ledger

* Can quickly & efficiently check all ledgers are consistent
* Most DLTs rely on peer-to-peer network: avold central servers
* (Large download when starting to mine bitcoins is the ledger)

COSC349 Lecture 23, 2025 12

FYI: Blockchain: types and cloud role

* Public, permissionless blockchains in Ethereum; bitcoin
* No centiral control over set of participants

* Need a consensus system such as proof-of-stake:
* compete to solve a hash-puzzle: winner is randomised and verifiable

* Private, permissioned systems more typical in enterprise

* Understand set of participants and who Is allowed to act
* Can facilitate BFT consensus which is stricter than ZooKeeper

* Can use blockchain to check cloud applications’ state
* Cloud providers also happlily sell (distributed) ledger systems

Amazon Quantum Ledger Database: QLDB

* QLDB: an append-only DB with verified transaction log

* Hash records (SHA-256) provided over transaction history
* Not a DLT: QLDB is centralised infrastructure; one data owner
* APl Is server-agnostic: Amazon will scale server-side as needed

* Pricing: based on I/O against data, and data storage
° |/O: writes—%$0.70/mil; reads—%$0.136/mil
* Storage: journal—$0.03/GB/month; index—%$0.25/GB/month

* PartiQl allows querying of fransaction records
* PartiQL extends SQL to handle semi-structured & nested data

COSC349 Lecture 23, 2025 14

