
Exam, message queues,
notifications, 

& step functions
COSC349—Cloud Computing Architecture

David Eyers

COSC349 Exam

• There are now four past papers available…

• Three hours; 100 marks across 8 questions; answer all questions

• In-person exam

• The 8 questions relate to different topic areas

• Expect some alignment with the lecture structure

• Each question has parts, and potentially subparts:

• lots of small questions & no “Cloud computing. Explain. (20 marks)”s

• Exam is on lecture material, not labs, or assignments

2COSC349 Lecture 23, 2023

Answering COSC349 exam questions

• Marking approach predictable from marks allocated:

• “Describe three reasons for… (6)”—assume 2 marks per reason

• Structuring answers as bullet points rather than prose is
OK provided that the linking to the question is clear

• Suggest you plan to do multiple passes through exam

• Answer questions you’re comfortable with first

• Some questions are intended to be more challenging

3COSC349 Lecture 23, 2023

Studying for COSC349

• Ensure you can answer the questions in the learning
objectives presented at the start of each lecture

• This should help highlight the key, core concepts

• Some of the more detailed lecture material is provided for

completeness, to provide context and for those interested

• (… but some of it is very technically detailed)

• Come to tutorials if you're unsure about your answers
to given learning objectives

• I’m very keen to help, but I can’t form your answers for you

4COSC349 Lecture 23, 2023

Learning objectives

• Understand that cloud applications will usually be built
from many different software components & services

• Describe the role in building cloud applications of:

• Notification services, e.g., Amazon’s Simple Notification Service

• Message queues, e.g., Amazon’s Simple Queueing Service

• Illustrate how Amazon Step Functions provide support
for distributed transactions in cloud applications

5COSC349 Lecture 23, 2023

Cloud plumbing

• Ideally software components are specialised

• Facilitates effective separation of concerns

• Allows for broadest possible reuse potential

• Scalability and elasticity can focus on specific functionality

• But applications need interconnected components

• Want to avoid hard-coding component interactions

• Interconnections are good monitoring, logging, & audit points

• Often can use discrete messages rather than data streams

6COSC349 Lecture 23, 2023

Component interaction queuing examples

•Workloads we’ve seen: synchronous, 1–1 interactions

• Web + DB—web request initiates DB query; render DB response

• S3 + Lambda—react when a particular bucket is changed

• Two different, useful types of decoupling are:

• 1 May have 1–n, e.g., allocate jobs to a pool of workers

• 2 May have disconnected targets, e.g., onsite database

• e.g., ensure that retry can occur, but is not sender's problem

• Even within cloud services, batching can boost performance

7COSC349 Lecture 23, 2023

Message queues and notification services

• Notification services and message queues factor out
interconnection needs between software components

• Notification services—e.g., publish/subscribe paradigm

• Publishers publish messages on particular topics

• Subscribers subscribe to those topics

• Message queues typically focused on reliable delivery

• Temporary storage of messages is the focus

8COSC349 Lecture 23, 2023

Message queues: key features

• Common case functionality of message queues is easy

• Just a buffer between producer(s) and consumer(s)

• … but buffer needs persistency; high throughput; low latency

• (These requirements usually trade off against each other.)

• Message queues often provide further functionality

• Asynchronous delivery—receiver need not be online

• When sending, producer needs not consider receiver’s status

• Reliable delivery—retry after failures

• Dead letter queue (DLQ)—messages go here after max. retries

9COSC349 Lecture 23, 2023

Amazon Simple Queueing Service (SQS)

• SQS—decouples two applications

• Producer pushes messages into a queue

• Consumer pulls messages from the queue

• Push/pull is analogous to pipes in Unix / WinNT OS kernels

• Messages are stored for up to 14 days

• Two queue types: (for 64KB ‘chunks’)

• Standard—may: deliver duplicates; out of order ($0.40/mil)

• FIFO—no duplicates; first-in-first-out order; slower ($0.50/mil)

10COSC349 Lecture 23, 2023

Amazon Simple Notification Service (SNS)

• SNS is a topic-based publish-subscribe system

• Has multiple subscriber types:

• High-speed: SQS; HTTP(S) POST to web-hooks; AWS Lambda

• Mobile: email; SMS; iOS+Android push notifications

• Fan out to multiple interested subscribers

• Subscribers can set filters on notifications

• e.g., prefix matching on names; range matching on attributes

• (SNS can then pass filtering close to source, which is optimal)

• Topics can be set to deliver raw data: payload without JSON

11COSC349 Lecture 23, 2023

Amazon Step Functions

•What if you want to use a workflow with time delays?

• e.g., notify owner one month after they upload an S3 object

• SQS / SNS can’t help directly: don’t support app-level timing

• Can’t usefully use Lambda, as function would run for a month!

• Amazon Step Functions handle this type of use case:

• Track states of execution—you’re only charged for transitions

• Steps in parallel; serial; conditional; relative/absolute delay,…

• Easy Lambda support; but doesn’t work in AWS Academy

12COSC349 Lecture 23, 2023

Distributed transactions

• Typical monolithic application design is DB-backed

• Databases usefully support transactions

• However databases are also a common bottleneck in designs

• Saga pattern is common micro-services alternative

• (Actually published in 1987 by Garcia-Molina and Salem)

• Saga is sequence of tasks that are in “transaction”

• Each task must have a compensating action—an “undo”

• These must be idempotent: saga rewind might need rerunning

• Amazon Step Functions can orchestrate saga implementation

13COSC349 Lecture 23, 2023

