
Elasticity
COSC349—Cloud Computing Architecture


David Eyers



Learning objectives

• Illustrate what a scale-out system is, using an example


• Define elasticity in the context of cloud computing


• Explain why cloud computing is suited to offer elasticity


• List some ways in which services can be partitioned


• Describe how caching can help effect scalability

2COSC349 Lecture 16, 2023



Elasticity: match client load

• Servers may have highly variable load

• Consider peak vs. average load

• Inefficient to provision for peak

• Unsafe to provision only for average


• Scalability: service’s ability to handle high peak loads


• Elasticity means that service can scale up and down

• Pay for what load is relevant at the time: service-based pricing

• Usually technically effected by auto-scaling

3COSC349 Lecture 16, 2023

Load

Peak Load

Average Load

Time



Scalability: required for elasticity

• Highly scalable systems need to avoid dependencies

• e.g., global lock on a shared data structure kills scalability

• FYI Python and Ruby both have global interpreter locks! (GILs)

• Scaling CPU-bound Python needs multi-process not multithreaded


• Making locks finer-grained helps scalability

• However it may lead to more complex software

• Higher-order problems can be caused: e.g., deadlock, livelock

• Understand the application: is resource contention necessary?

4COSC349 Lecture 16, 2023



Scalable software designs

• Partitioning is a typical approach to scalability

• e.g., subsets of users and objects handled by different servers

• need to understand interaction patterns on systems

• e.g., internal traffic versus external traffic


• Caching of data can greatly assist scalability

• Workload type needs attention: e.g., read-only / read+write ?

• Web originally scaled well because of caching:

• caching avoided all requests needing to reach the origin server

5COSC349 Lecture 16, 2023



Multiple places to partition workload

• Application-level: partition users and/or objects

• Use application semantics to partition effectively

• Most common mechanism for ‘scale-out’ systems


• Programming language: partition your application

• Some procedural languages permit distributed deployment

• Data-flow programming can optimise distributed execution

• e.g., operator placement in distributed stream processing systems


• Server-level: run code across a large number of CPUs

• Requires software systems to support multi-processing 

6COSC349 Lecture 16, 2023



Designs and tools for caching

• Most scalable application architectures have caching

• e.g., caching within first tier of three-tier web architecture 

• Tiers: (1) front-end servers; (2) business logic; (3) back-end storage


• Many caching systems are key-value databases:

• Often systems work in-memory with data snapshots on disk

• e.g., Memcached; Redis; Amazon DynamoDB

7COSC349 Lecture 16, 2023



Scale-out approaches for server types

• Email—partition on subsets of mailboxes

• Efficiency depends on inter/intra-subset interaction patterns


• Storage—partition on user accounts

• …but noting that copying between partitions will be expensive


• Databases—‘sharding’: tables, or sets of columns/rows

• Also, add scale-out cache for read-only access


• Web—design site’s content to be cache friendly

• Use scale-out caching and database systems


• Examine your systems for what might block scale-out
8COSC349 Lecture 16, 2023



Elasticity in the cloud context

• Client ensures cloud provider can scale up application

• At IaaS-level: provider knows how to image and start VMs

• At PaaS-level: provider understand components to replicate 

• SaaS should already be elastic, transparently, if done right


• Other system components also need reconfiguration:

• Load balancing components need to know set of workers


• After scaling up, need to know when to scale back:

• e.g., use time-based leases of resources with periodic renewal

9COSC349 Lecture 16, 2023



Monitoring is required to effect elasticity

• Not useful knowing the need for scaling up too late

• e.g., being notified that front-end servers already falling over


• Monitoring of infrastructure is required for elasticity

• Understand the load on system components & rate of change

• Set scaling heuristics: e.g., upper/lower bounds on server load


• These are typical control-system challenges: i.e.,

• Must not react too quickly (cost) or too slowly (disruptions)

• Need to factor in that scaling itself may have a transition cost

10COSC349 Lecture 16, 2023



Examples of Amazon’s elastic services

• Recall that EC2 stands for Elastic Compute Cloud

• EC2 supports auto-scaling groups of VMs. Scaling options:

• maintain count; manual; schedule; on demand; 

• also a predictive option that works with other AWS offerings


• Amazon Elastic Beanstalk—PaaS-level orchestration

• Can include: EC2; S3; load balancers; SNS (notifications); …


• ‘Elastic’ is in many, many other AWS names

• Elastic MapReduce (Hadoop, etc.); Elasticsearch; …

11COSC349 Lecture 16, 2023


