
Elasticity
COSC349—Cloud Computing Architecture

David Eyers

Learning objectives

• Illustrate what a scale-out system is, using an example

• Define elasticity in the context of cloud computing

• Explain why cloud computing is suited to offer elasticity

• List some ways in which services can be partitioned

• Describe how caching can help effect scalability

2COSC349 Lecture 16, 2023

Elasticity: match client load

• Servers may have highly variable load
• Consider peak vs. average load
• Inefficient to provision for peak
• Unsafe to provision only for average

• Scalability: service’s ability to handle high peak loads

• Elasticity means that service can scale up and down
• Pay for what load is relevant at the time: service-based pricing
• Usually technically effected by auto-scaling

3COSC349 Lecture 16, 2023

Load

Peak Load

Average Load

Time

Scalability: required for elasticity

• Highly scalable systems need to avoid dependencies
• e.g., global lock on a shared data structure kills scalability
• FYI Python and Ruby both have global interpreter locks! (GILs)
• Scaling CPU-bound Python needs multi-process not multithreaded

• Making locks finer-grained helps scalability
• However it may lead to more complex software
• Higher-order problems can be caused: e.g., deadlock, livelock
• Understand the application: is resource contention necessary?

4COSC349 Lecture 16, 2023

Scalable software designs

• Partitioning is a typical approach to scalability
• e.g., subsets of users and objects handled by different servers
• need to understand interaction patterns on systems
• e.g., internal traffic versus external traffic

• Caching of data can greatly assist scalability
• Workload type needs attention: e.g., read-only / read+write ?
• Web originally scaled well because of caching:
• caching avoided all requests needing to reach the origin server

5COSC349 Lecture 16, 2023

Multiple places to partition workload

• Application-level: partition users and/or objects
• Use application semantics to partition effectively
• Most common mechanism for ‘scale-out’ systems

• Programming language: partition your application
• Some procedural languages permit distributed deployment
• Data-flow programming can optimise distributed execution
• e.g., operator placement in distributed stream processing systems

• Server-level: run code across a large number of CPUs
• Requires software systems to support multi-processing

6COSC349 Lecture 16, 2023

Designs and tools for caching

• Most scalable application architectures have caching
• e.g., caching within first tier of three-tier web architecture
• Tiers: (1) front-end servers; (2) business logic; (3) back-end storage

• Many caching systems are key-value databases:
• Often systems work in-memory with data snapshots on disk
• e.g., Memcached; Redis; Amazon DynamoDB

7COSC349 Lecture 16, 2023

Scale-out approaches for server types

• Email—partition on subsets of mailboxes
• Efficiency depends on inter/intra-subset interaction patterns

• Storage—partition on user accounts
• …but noting that copying between partitions will be expensive

• Databases—‘sharding’: tables, or sets of columns/rows
• Also, add scale-out cache for read-only access

• Web—design site’s content to be cache friendly
• Use scale-out caching and database systems

• Examine your systems for what might block scale-out
8COSC349 Lecture 16, 2023

Elasticity in the cloud context

• Client ensures cloud provider can scale up application
• At IaaS-level: provider knows how to image and start VMs
• At PaaS-level: provider understand components to replicate
• SaaS should already be elastic, transparently, if done right

• Other system components also need reconfiguration:
• Load balancing components need to know set of workers

• After scaling up, need to know when to scale back:
• e.g., use time-based leases of resources with periodic renewal

9COSC349 Lecture 16, 2023

Monitoring is required to effect elasticity

• Not useful knowing the need for scaling up too late
• e.g., being notified that front-end servers already falling over

• Monitoring of infrastructure is required for elasticity
• Understand the load on system components & rate of change
• Set scaling heuristics: e.g., upper/lower bounds on server load

• These are typical control-system challenges: i.e.,
• Must not react too quickly (cost) or too slowly (disruptions)
• Need to factor in that scaling itself may have a transition cost

10COSC349 Lecture 16, 2023

Examples of Amazon’s elastic services

• Recall that EC2 stands for Elastic Compute Cloud
• EC2 supports auto-scaling groups of VMs. Scaling options:
• maintain count; manual; schedule; on demand;
• also a predictive option that works with other AWS offerings

• Amazon Elastic Beanstalk—PaaS-level orchestration
• Can include: EC2; S3; load balancers; SNS (notifications); …

• ‘Elastic’ is in many, many other AWS names
• Elastic MapReduce (Hadoop, etc.); Elasticsearch; …

11COSC349 Lecture 16, 2023

