
Container orchestration 
and Kubernetes

COSC349—Cloud Computing Architecture

David Eyers



Learning objectives

• Explain required container orchestration functionality

• Kubernetes is the dominant tool, so a good point of reference


• Describe etcd’s role in managing container clusters

• Its history within Container Linux (was CoreOS) gives context


• Appreciate rapid change in features of cloud tools

• Also that tool functionality may partially or completely overlap

2COSC349 Lecture 14, 2023



Container orchestration

• Containers need to be managed

• e.g., Google’s been using containers in production, for years


• Numerous container orchestration systems emerged:

• Docker swarm mode—built-in simple Docker cluster manager

• Docker compose—means to specify multi-container ‘stacks’

• Kubernetes—focus of today’s lecture…

• Apache Mesos—also supports non-containerised workloads

• OpenShift—as discussed previously in PaaS lecture

3COSC349 Lecture 14, 2023



RHEL / Fedora CoreOS

• Linux distribution intended only to run containers

• Previously Container Linux; previously-previously CoreOS

• No software package manager: /usr is read-only

• Security updates are applied monolithically (i.e., all at once)


• Originally ran Docker containers, subsequently rkt, etc.


• Can’t run container host cluster without coordination

• … CoreOS team developed and provides etcd for coordination

4COSC349 Lecture 14, 2023



Kubernetes

• Project emerged from Google in 2014; v1.0 released 2015


• Kubernetes has a number of key types of objects:

• Pods—tightly coupled set of containers; smallest unit of scheduling

• Services—set of pods grouped behind load balancer

• Volumes—persistent storage; can share between containers

• Namespaces—e.g., same device names in dev, test & production 

• ConfigMaps and Secrets—runtime configuration parameters


• Kubernetes works with many container technologies
5COSC349 Lecture 14, 2023



6COSC349 Lecture 14, 2023—from Kubernetes web documentation: Creative Commons BY-4.0 licensed

k-proxy

kubelet

sched
schedsched

Control Plane

Node

etcd

Kubernetes cluster

api
api

api

c-c-m
c-c-m

c-c-m

c-m
c-m

c-m

Node Node

k-proxy

kubelet kubelet

k-proxy
Control plane

Scheduler
sched

Cloud controller
manager
(optional) c-c-m

Controller
manager c-m

kubelet
kubelet

kube-proxy
k-proxy

(persistence store)
etcd

etcd

Node

API server
api

https://github.com/kubernetes/website/blob/main/static/images/docs/components-of-kubernetes.svg


Kubernetes pods

• Pods are the basic unit of application execution

• Common case is to have one container in a pod

• Multiple containers in a pod tightly couple them

• Should be used when those containers share local resources


• Pods are assigned an IP address, for networking

• All containers within the pod share that address and its ports


• Pods provide app. storage (volumes) to containers


• Pods usually created by controllers, and not directly

• e.g., controller types: Deployment, StatefulSet, DaemonSet

7COSC349 Lecture 14, 2023



Stateless versus stateful applications

• Stateless applications scale easily: just start more pods

• e.g., web servers presenting read-only workloads


• Stateful apps are more difficult, e.g.:

• Databases having primary and secondary instances

• Distributed components that spread state over instances


• Kubernetes controllers: you select stateless / stateful

• e.g., storage is handled differently for stateful applications

• volume can be unique for a given instance of a pod in a set

• otherwise volumes are shared across all instances of pods in a set

8COSC349 Lecture 14, 2023



Architecture of Kubernetes

• Control plane is logically centralised control point

• API server—allows Kubernetes cluster to be controlled

• controller manager—checks replication; nodes are up

• scheduler—allocates pods waiting to run to nodes

• etcd—consistent repository of configuration information


• Kubernetes Nodes run pods, but also:

• Kube-Proxy—provides network services; leveraging OS facilities

• cAdvisor—provides statistics about container resource use

• Kubelet—checks on health of containers within a pod

9COSC349 Lecture 14, 2023



Kubernetes Scheduler

• Scheduling is a multi-factor optimisation problem

• Tradeoff between global (slow) & local (may not be optimal)


• K8s Scheduler is not global; uses multiple phases:

• P1: find nodes that can run pods without resourcing violations

• P2: score which plan appears to be best, choose best score


•Will try to place pods on nodes with available space…

• … otherwise force pods onto nodes & kill some existing pods

• Killed pods may be replicas not currently being used much

10COSC349 Lecture 14, 2023



etcd—consistent, distributed key-value DB

• etcd was developed to support CoreOS coordination:

• needed to reliably do rolling OS reboots without breaking apps


• Actually a distributed consensus system

• inspired by Google Chubby—an internal database project

• Implemented in the Go language, with API using HTTP+JSON


• (We cover distributed consensus in a future lecture…)

11COSC349 Lecture 14, 2023



Kubernetes as a Service

• K8s can manage your containers, but how to set it up?

• IaaS needs for the VMs running control plane and the nodes


• Amazon offer a range of options:

• AWS Fargate provides a complete container service

• AWS EKS provides control plane; you set up K8s nodes on EC2

• Use EC2 to deploy all the components if you want full control


• Cloud providers’ container services are very similar

• Can deploy containers onto clusters in multiple clouds

12COSC349 Lecture 14, 2023



Terraform versus Rancher, Kubernetes, etc.

• Rancher can help deploy Kubernetes over bare metal

• Rancher also unifies monitoring & security management tools


• However, you may need specific infrastructure nodes

• e.g., configuring a GPU/TPU node on AWS for deep learning


• Terraform is a level below tools like Rancher, it:

• can effect deep IoC impacts—allows preview of its plans

• can thus easily provision at level of particular GPU instance

• … then pass control of software to a container manager

13COSC349 Lecture 14, 2023



Why it’s so hard to pick a ‘winner’

• Tools can manage each other—it’s all just software!

• All are churning rapidly in what’s provided, e.g.:

• Rancher’s original functionality replaced by Docker Swarm

• CoreOS Linux’s original ‘fleet’ functionality replaced by K8s


•Which to use? Consider your and your team’s time

• Will new tool optimise your processes along with transition cost?


• Aim to have IoC and continuous integration pipelines

• All future tooling is likely to move in the direction of IoC

14COSC349 Lecture 14, 2023


