
Orchestration and 
Infrastructure as Code
COSC349—Cloud Computing Architecture 

David Eyers



Learning objectives

• Define orchestration as relevant to cloud computing 
• including provisioning of virtual servers and infrastructure 
• software configuration of running cloud virtual servers 

• Define ‘infrastructure as code’ (IAC) 

• Contrast declarative/imperative software configuration 

• Describe benefits of immutable VM deployment

2COSC349 Lecture 13, 2023



Defining orchestration

• Automated coordination of computer systems 
• Deployment and configuration 
• Interconnection and management 
• Monitoring often included, to inform management actions 

• Vast, growing set of good solutions, many open source 
• Machine focused: e.g., Puppet, Terraform, Ansible, Salt, Chef… 
• Cloud-based: e.g., AWS CloudFormation, Terraform 
• Container clusters: e.g., Kubernetes

3COSC349 Lecture 13, 2023



FYI: Choreography similar to orchestration

• Orchestration typically involves central control 
• i.e., a coordinator has code to instruct components 

• Choreography often involves distributed operation 
• … but also about management of computer systems 
• e.g., the protocols and rules between specific services 

• W3C Web Services technologies define standards 
• … but cloud evolved services independently from W3C WS

4COSC349 Lecture 13, 2023



Machine-focused configuration tools

• Common goal: target machine reaches target state 
• different paradigms: declarative versus imperative 

• Different extents of coverage 
• Config. management: install & manage software; OS assumed 
• Provisioning: may set up machine from (virtual) bare-metal 

• Different types of presence on target machine 
• e.g., run persistent agent vs. gather information on demand

5COSC349 Lecture 13, 2023



Orchestration in the cloud

• Usually need to both provision and configure VMs 
• Also need to configure services via API: e.g., storage, and … 
• Set up virtual networking: load balancing, firewall security, … 

• Different possible life-cycles for orchestration’s reach 
• e.g., making app-specific AMI vs. use Linux AMI and configure 
• Choose based on frequency of software change on the VM image 

• Need to bootstrap cloud access for tools from somewhere 
• But also IAM? Also networks? What is needed depends on context

6COSC349 Lecture 13, 2023



Container orchestration

• Containers are convenient units for cloud deployment 
• As seen previously: combines OS with particular app. function 
• Storage and network configuration specified explicitly 
• Contrast VMs, where configuration has to be done on ‘inside’ 

• Orchestration of containers involves: 
• Keeping quotas of active containers of different types 
• (e.g., recover from failure of containers; scale as needed) 

• Managing inter-networking of containers 
• Ensuring that disk layers are available where needed

7COSC349 Lecture 13, 2023



Multi-cloud orchestration

• Most large organisations use many cloud providers: e.g., 
• explicit strategy to protect against vendor lock-in; 
• resilience to failures within one cloud provider; 
• and/or consequence of non-coordinated decisions in organisation 

• Services emerging that manage multiple+hybrid clouds 
• e.g., Scalr applies policy controls across all cloud resources 

• VM / container support common across cloud providers 
• but specifics of security and network configuration will be different

8COSC349 Lecture 13, 2023



Declarative configuration management

• Declarative tools specify the desired target state 
• The means to reach target state is up to the config. engine 
• (Embodies declarative paradigm: e.g., SQL in DBs, Prolog in PLs, …) 

• Can take corrective action to react to drift in machine’s state 

• State specification will be a domain specific language 
• (There is no general-purpose declarative mechanism) 

• Common FOSS tools with large user communities: 
• Puppet, Terraform, CFEngine (was used in CS Labs), SaltStack

9COSC349 Lecture 13, 2023



Imperative configuration management

• Also termed ‘procedural’, i.e., specifying steps to run: 
• usually chunks of code in conf. systems’ authors’ favourite PL 

• Common tools: Ansible (Py), Chef (Ruby), SaltStack 

• Can write imperative code to have declarative effect 
• Idempotency—repeated run of code has no additional effect 
• Dependencies—code ensures good order of operations 
• Although just because it’s possible doesn’t make it a good idea: 
• e.g., declarative engines will do scheduling of dependencies for you

10COSC349 Lecture 13, 2023



Declarative vs. imperative paradigms

• Imperative suits migrating from custom scripting 

• Declarative can well suit evolution: 
• Want 10 EC2 instances? Ansible and Terraform syntax similar 
• Now say you want to increase to 15 EC2 VM instances 
• Declarative—update spec to 15; engine sees need to add 5 VMs 
• Imperative… 15 new instances? Or create 5… but have to ensure 

that scripting to setup from clean creates 15? May be messy… 

• Different approaches may best suit different job roles: 
• e.g., declarative for sysadmin; imperative for devop coder?

11COSC349 Lecture 13, 2023—example from Gruntwork’s article on use of Terraform



Immutable—no configuration management

• Configuration management patches running servers 
• Configuration drift in large systems: slowly get OS differences… 

• Instead, deploy & upgrade whole OS+app atomically 
• Possible now that redeployment is cheap, e.g., containers 
• Application mutability through blue/green evolution: 
• try blue version on set of new servers, if OK, retire green servers 

• Netflix: technician touched server? Reimage it soon!

12COSC349 Lecture 13, 2023



Infrastructure as code (IAC)

• IAC covers configuration management & provisioning 
• also involves avoiding hardware configuration (e.g., switches) 
• goal is for complete automation, from machine readable files 
• works both for cloud, cluster and single server operation 

• Cost reduction for organisations in terms of staff 
• Focus on business needs rather than device management 

• DevOp-style: if Git repository defines app, you have IAC 
• Continuous integration pipelines often used to deploy

13COSC349 Lecture 13, 2023


