
Orchestration and 
Infrastructure as Code
COSC349—Cloud Computing Architecture


David Eyers



Learning objectives

• Define orchestration as relevant to cloud computing

• including provisioning of virtual servers and infrastructure

• software configuration of running cloud virtual servers


• Define ‘infrastructure as code’ (IAC)


• Contrast declarative/imperative software configuration


• Describe benefits of immutable VM deployment

2COSC349 Lecture 13, 2023



Defining orchestration

• Automated coordination of computer systems

• Deployment and configuration

• Interconnection and management

• Monitoring often included, to inform management actions


• Vast, growing set of good solutions, many open source

• Machine focused: e.g., Puppet, Terraform, Ansible, Salt, Chef…

• Cloud-based: e.g., AWS CloudFormation, Terraform

• Container clusters: e.g., Kubernetes

3COSC349 Lecture 13, 2023



FYI: Choreography similar to orchestration

• Orchestration typically involves central control

• i.e., a coordinator has code to instruct components


• Choreography often involves distributed operation

• … but also about management of computer systems

• e.g., the protocols and rules between specific services


• W3C Web Services technologies define standards

• … but cloud evolved services independently from W3C WS

4COSC349 Lecture 13, 2023



Machine-focused configuration tools

• Common goal: target machine reaches target state

• different paradigms: declarative versus imperative


• Different extents of coverage

• Config. management: install & manage software; OS assumed

• Provisioning: may set up machine from (virtual) bare-metal


• Different types of presence on target machine

• e.g., run persistent agent vs. gather information on demand

5COSC349 Lecture 13, 2023



Orchestration in the cloud

• Usually need to both provision and configure VMs

• Also need to configure services via API: e.g., storage, and …

• Set up virtual networking: load balancing, firewall security, …


• Different possible life-cycles for orchestration’s reach

• e.g., making app-specific AMI vs. use Linux AMI and configure

• Choose based on frequency of software change on the VM image


• Need to bootstrap cloud access for tools from somewhere

• But also IAM? Also networks? What is needed depends on context

6COSC349 Lecture 13, 2023



Container orchestration

• Containers are convenient units for cloud deployment

• As seen previously: combines OS with particular app. function

• Storage and network configuration specified explicitly

• Contrast VMs, where configuration has to be done on ‘inside’


• Orchestration of containers involves:

• Keeping quotas of active containers of different types

• (e.g., recover from failure of containers; scale as needed)


• Managing inter-networking of containers

• Ensuring that disk layers are available where needed

7COSC349 Lecture 13, 2023



Multi-cloud orchestration

• Most large organisations use many cloud providers: e.g.,

• explicit strategy to protect against vendor lock-in;

• resilience to failures within one cloud provider;

• and/or consequence of non-coordinated decisions in organisation


• Services emerging that manage multiple+hybrid clouds

• e.g., Scalr applies policy controls across all cloud resources


• VM / container support common across cloud providers

• but specifics of security and network configuration will be different

8COSC349 Lecture 13, 2023



Declarative configuration management

• Declarative tools specify the desired target state

• The means to reach target state is up to the config. engine

• (Embodies declarative paradigm: e.g., SQL in DBs, Prolog in PLs, …)


• Can take corrective action to react to drift in machine’s state


• State specification will be a domain specific language

• (There is no general-purpose declarative mechanism)


• Common FOSS tools with large user communities:

• Puppet, Terraform, CFEngine (was used in CS Labs), SaltStack

9COSC349 Lecture 13, 2023



Imperative configuration management

• Also termed ‘procedural’, i.e., specifying steps to run:

• usually chunks of code in conf. systems’ authors’ favourite PL


• Common tools: Ansible (Py), Chef (Ruby), SaltStack


• Can write imperative code to have declarative effect

• Idempotency—repeated run of code has no additional effect

• Dependencies—code ensures good order of operations

• Although just because it’s possible doesn’t make it a good idea:

• e.g., declarative engines will do scheduling of dependencies for you

10COSC349 Lecture 13, 2023



Declarative vs. imperative paradigms

• Imperative suits migrating from custom scripting


• Declarative can well suit evolution:

• Want 10 EC2 instances? Ansible and Terraform syntax similar

• Now say you want to increase to 15 EC2 VM instances

• Declarative—update spec to 15; engine sees need to add 5 VMs

• Imperative… 15 new instances? Or create 5… but have to ensure 

that scripting to setup from clean creates 15? May be messy…


• Different approaches may best suit different job roles:

• e.g., declarative for sysadmin; imperative for devop coder?

11COSC349 Lecture 13, 2023—example from Gruntwork’s article on use of Terraform



Immutable—no configuration management

• Configuration management patches running servers

• Configuration drift in large systems: slowly get OS differences…


• Instead, deploy & upgrade whole OS+app atomically

• Possible now that redeployment is cheap, e.g., containers

• Application mutability through blue/green evolution:

• try blue version on set of new servers, if OK, retire green servers


• Netflix: technician touched server? Reimage it soon!

12COSC349 Lecture 13, 2023



Infrastructure as code (IAC)

• IAC covers configuration management & provisioning

• also involves avoiding hardware configuration (e.g., switches)

• goal is for complete automation, from machine readable files

• works both for cloud, cluster and single server operation


• Cost reduction for organisations in terms of staff

• Focus on business needs rather than device management


• DevOp-style: if Git repository defines app, you have IAC

• Continuous integration pipelines often used to deploy

13COSC349 Lecture 13, 2023


