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Learning objectives

• Define Platform as a Service (PaaS)


• Contrast PaaS with IaaS (and eventually with SaaS)


• Indicate good and bad points about PaaS


• Sketch how an application might be deployed using a 
given PaaS platform


• Explain how Docker and other container technology 
has affected PaaS offerings
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PaaS—Platform as a Service

• PaaS is between IaaS & SaaS

• You don’t manage VMs directly (IaaS)

• Can’t just use app. software (SaaS)

• Aimed at use by software developers


• Term ‘platform’: broad & imprecise


• Key point: cloud provider will see 
your software components
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Benefits and disadvantages of PaaS

• Focus on your application logic, not managing VMs

• Just get the cloud environment, such as APIs to work with

• Cloud provider can further leverage economies of scale


• Disadvantages: potentially get lock-in

• More likely API is tied to specific software from cloud provider

• Although mature interchange languages like SQL mitigate this


• Lack of flexibility: public PaaS isn’t necessarily very extensible

• Also don’t have complete control over the cloud’s services
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PaaS examples emerged soon after IaaS

• Heroku (since 2007) provided cloud hosting of Ruby

• PaaS: you just upload Ruby source code; app gets deployed

• Like many PaaS offerings, it is hosted on Amazon EC2 (IaaS)


• Google App Engine (2008)

• Google already had scalable APIs for their own software

• App Engine was a way to turn that into a service for sale


• RedHat OpenShift (2011)—closed then open source…

• Sought to effect paradigm shift: scalable components (v2)


• VMware Cloud Foundry (2011)—always open source
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Heroku

• Ruby on Rails (2004) promoted Ruby for web coding

• popularised model-view-controller; usually web+database

• HTTP-focused web accessibility (e.g., web and REST)


• Deploying code to Heroku typically done using git push

• Other deployment methods added: e.g., Dropbox, and an API


• Language-focused clouds don’t have to be Ruby

• Now also Node.js, Clojure, Scala, PHP, Python, Go, Java, …
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Google App Engine (GAE) 

• Lots of development language options:

• e.g., Java, Python, Go, PHP, Node.js, …

• Overall makes coding easy, but limited in form


• Code can only react to HTTP requests (can self-request)


• Database provided: originally Google's Cloud SQL


• Lock-in concerns mitigated (?) by FOSS AppScale, etc.
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FYI—RedHat OpenShift v1 and v2

• Applications used ‘gears’ to do their computing

• Gears used namespaces, cgroups and SELinux for isolation

• Free-tier allowed three non-scalable gears (until platform EOL)

• I hosted a test Drupal website and an Etherpad server… 


• Notion of ‘cartridges’ that can be combined in a gear

• Language cartridges such as Ruby on Rails

• Database cartridges such as MySQL or MongoDB


• Cartridges auto-interconnected, e.g., Rails + MySQL
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FYI—RedHat OpenShift version 3

• Gears turned into Docker containers


• Orchestration of containers uses Kubernetes

• OpenShift 2 had a custom broker to manage multi-gear apps


• Images are mapped 1:1 to containers

• OpenShift 2 cartridges could be loaded N:1 into a gear


• OpenShift 3 uses images like any other Docker client

• OpenShift 2 required a code repository within OpenShift itself
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Cloud Foundry

• Started within VMware—open source throughout

• Targets multiple execution platforms

• e.g., private clusters running VMware vSphere, OpenStack

• All the IaaS cloud providers we’ve discussed


• Cloud Foundry supports software ‘lifecycles'

• Buildpack lifecycle: Java; JavaScript; Ruby; Python; PHP; Go; 

notably adds .NET and .NET Core

• Docker containers can be run in a different type of lifecycle
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PaaS and (software) containers?

• Containers rose to prominence after PaaS began


• Amazon ECS provides two container solutions

• EC2 launch type can help manage a cluster of VMs

• Essentially is assisted IaaS: you specify container server EC2 types


• Amazon Fargate type accepts container images directly

• No management of underlying VMs, thus much more PaaS-like


• Google Kubernetes Engine

• Uses Google Compute Engine nodes as workers
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Typical services provided by PaaS

• Language runtime

• Possibly as a framework, e.g., rake rather than just Ruby


• Database—your PL usually doesn’t include a DB


• Load balancing and autoscaling layer


•While AWS is IaaS-focused, it provides many PaaS tools

• Elastic Load Balancer works with HTTP and other protocols

• Amazon Relational Database Service (RDS)

• Offerings like Elastic MapReduce (EMR)—managed Hadoop
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AWS & relational databases: three variants

• (Amazon provides many non-relational databases too)


• A: allocate an EC2 instance and install a database

• You can install whatever you want …

• but patching, scaling and backup/restore are your problem


• B: Amazon Relational Database Service (RDS)

• Choose: PostgreSQL, MySQL, MariaDB, Oracle, SQL Server…

• Patching, scaling and backup/restore are Amazon’s problem


• C: Amazon Aurora: choose PostgreSQL or MySQL
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Amazon Aurora

• Amazon realised MySQL on EC2 had too many layers

• MySQL tried optimising file access on disk—opaque to Amazon

• But MySQL has pluggable datable storage engines, so…


• In Aurora, Amazon switches in their own database engine

• All data has 6 replicas across 3 availability zones

• Database is backed up continuously to S3

• Performance+reliability boost is Amazon-specific: is this lock in?


• Amazon later reengineered PostgreSQL in a similar way
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