
Platform as a Service 
(PaaS)

COSC349—Cloud Computing Architecture

David Eyers



Learning objectives

• Define Platform as a Service (PaaS)


• Contrast PaaS with IaaS (and eventually with SaaS)


• Indicate good and bad points about PaaS


• Sketch how an application might be deployed using a 
given PaaS platform


• Explain how Docker and other container technology 
has affected PaaS offerings

2COSC349 Lecture 10, 2024



PaaS—Platform as a Service

• PaaS is between IaaS & SaaS

• You don’t manage VMs directly (IaaS)

• Can’t just use app. software (SaaS)

• Aimed at use by software developers


• Term ‘platform’: broad & imprecise


• Key point: cloud provider will see 
your software components

3COSC349 Lecture 10, 2024

Application 
specific code

Middleware and 
Servers (DBs, 

Web, etc.)

Operating System 
kernel

Hypervisor

Ia
aS

Pa
aS

Application 
configuration Sa

aS

Elasticity



Benefits and disadvantages of PaaS

• Focus on your application logic, not managing VMs

• Just get the cloud environment, such as APIs to work with

• Cloud provider can further leverage economies of scale


• Disadvantages: potentially get lock-in

• More likely API is tied to specific software from cloud provider

• Although mature interchange languages like SQL mitigate this


• Lack of flexibility: public PaaS isn’t necessarily very extensible

• Also don’t have complete control over the cloud’s services

4COSC349 Lecture 10, 2024



PaaS examples emerged soon after IaaS

• Heroku (since 2007) provided cloud hosting of Ruby

• PaaS: you just upload Ruby source code; app gets deployed

• Like many PaaS offerings, it is hosted on Amazon EC2 (IaaS)


• Google App Engine (2008)

• Google already had scalable APIs for their own software

• App Engine was a way to turn that into a service for sale


• RedHat OpenShift (2011)—closed then open source…

• Sought to effect paradigm shift: scalable components (v2)


• VMware Cloud Foundry (2011)—always open source
5COSC349 Lecture 10, 2024



Heroku

• Ruby on Rails (2004) promoted Ruby for web coding

• popularised model-view-controller; usually web+database

• HTTP-focused web accessibility (e.g., web and REST)


• Deploying code to Heroku typically done using git push

• Other deployment methods added: e.g., Dropbox, and an API


• Language-focused clouds don’t have to be Ruby

• Now also Node.js, Clojure, Scala, PHP, Python, Go, Java, …

6COSC349 Lecture 10, 2024



Google App Engine (GAE) 

• Lots of development language options:

• e.g., Java, Python, Go, PHP, Node.js, …

• Overall makes coding easy, but limited in form


• Code can only react to HTTP requests (can self-request)


• Database provided: originally Google's Cloud SQL


• Lock-in concerns mitigated (?) by FOSS AppScale, etc.

7COSC349 Lecture 10, 2024



FYI—RedHat OpenShift v1 and v2

• Applications used ‘gears’ to do their computing

• Gears used namespaces, cgroups and SELinux for isolation

• Free-tier allowed three non-scalable gears (until platform EOL)

• I hosted a test Drupal website and an Etherpad server… 


• Notion of ‘cartridges’ that can be combined in a gear

• Language cartridges such as Ruby on Rails

• Database cartridges such as MySQL or MongoDB


• Cartridges auto-interconnected, e.g., Rails + MySQL

8COSC349 Lecture 10, 2024



FYI—RedHat OpenShift version 3

• Gears turned into Docker containers


• Orchestration of containers uses Kubernetes

• OpenShift 2 had a custom broker to manage multi-gear apps


• Images are mapped 1:1 to containers

• OpenShift 2 cartridges could be loaded N:1 into a gear


• OpenShift 3 uses images like any other Docker client

• OpenShift 2 required a code repository within OpenShift itself

9COSC349 Lecture 10, 2024



Cloud Foundry

• Started within VMware—open source throughout

• Targets multiple execution platforms

• e.g., private clusters running VMware vSphere, OpenStack

• All the IaaS cloud providers we’ve discussed


• Cloud Foundry supports software ‘lifecycles'

• Buildpack lifecycle: Java; JavaScript; Ruby; Python; PHP; Go; 

notably adds .NET and .NET Core

• Docker containers can be run in a different type of lifecycle

10COSC349 Lecture 10, 2024



PaaS and (software) containers?

• Containers rose to prominence after PaaS began


• Amazon ECS provides two container solutions

• EC2 launch type can help manage a cluster of VMs

• Essentially is assisted IaaS: you specify container server EC2 types


• Amazon Fargate type accepts container images directly

• No management of underlying VMs, thus much more PaaS-like


• Google Kubernetes Engine

• Uses Google Compute Engine nodes as workers

11COSC349 Lecture 10, 2024



Typical services provided by PaaS

• Language runtime

• Possibly as a framework, e.g., rake rather than just Ruby


• Database—your PL usually doesn’t include a DB


• Load balancing and autoscaling layer


•While AWS is IaaS-focused, it provides many PaaS tools

• Elastic Load Balancer works with HTTP and other protocols

• Amazon Relational Database Service (RDS)

• Offerings like Elastic MapReduce (EMR)—managed Hadoop

12COSC349 Lecture 10, 2024



AWS & relational databases: three variants

• (Amazon provides many non-relational databases too)


• A: allocate an EC2 instance and install a database

• You can install whatever you want …

• but patching, scaling and backup/restore are your problem


• B: Amazon Relational Database Service (RDS)

• Choose: PostgreSQL, MySQL, MariaDB, Oracle, SQL Server…

• Patching, scaling and backup/restore are Amazon’s problem


• C: Amazon Aurora: choose PostgreSQL or MySQL

13COSC349 Lecture 10, 2024



Amazon Aurora

• Amazon realised MySQL on EC2 had too many layers

• MySQL tried optimising file access on disk—opaque to Amazon

• But MySQL has pluggable datable storage engines, so…


• In Aurora, Amazon switches in their own database engine

• All data has 6 replicas across 3 availability zones

• Database is backed up continuously to S3

• Performance+reliability boost is Amazon-specific: is this lock in?


• Amazon later reengineered PostgreSQL in a similar way
14COSC349 Lecture 10, 2024


