
Containers
COSC349—Cloud Computing Architecture


David Eyers



Learning objectives

• Define what a (software) container is

• Give two benefits and two downsides of containers 

compared to full (AKA ‘hardware’) virtual machines


• Explain how a container framework like Docker 
optimises handling filesystems for its lightweight VMs


• Describe the role of online sites like Docker Hub in 
helping software developers use containers

2COSC349 Lecture 8, 2023



Lightweight virtualisation of software

•We have traced evolution of virtualisation

• Complete but non-real-time simulation

• Fast, but expensive full-machine virtualisation

• OS-level virtualisation of userspaces


• Most common OSs now support copy-on-write (CoW) 
filesystems that support VM snapshots & rapid cloning


• This is all about how to run VMs though, not about how 
to efficiently manage the software within the VM

3COSC349 Lecture 8, 2023



Compare using Vagrant to using VirtualBox

• You have seen how both tools work in the lab exercises

• VirtualBox provides a GUI (for VMs too): configure your VMs

• Vagrant focuses instead on the software running on your VMs


• Vagrant accelerates developer-focused use of VMs:

• Each VM’s ‘hardware’ gets a sane default configuration

• Vagrant box files only download once

• SSH interface facilitates convenient developer access

• Context-based VM selection based on working directory

4COSC349 Lecture 8, 2023



Software container frameworks, e.g. Docker

• Container is a ‘standard’ unit of OS-level virtualisation

• Analogous to physical multimodal shipping container (ISO 668)

• Works well in a Linux context (software licences not required)


• Usually containers run within OS-level virtualisation


• Attention paid to the container management API/CLI

• i.e., App. Programming Interface & Command Line Interface


• Container framework helps manage OS resources

• particularly disk, RAM and network

5COSC349 Lecture 8, 2023



RAM optimisation for containers

• RAM is an expensive resource when running VMs


• Unlike CPU, can't effectively time share: significant 
performance drop to swap data between RAM & disk

• Would involve lots of reads and writes to disk


• Containers help by avoiding duplication of OS kernel

•Within VMs, containers can memory map one instance 

of each shared library for further de-duplication

• but this breaks when multiple versions of a library are used

6COSC349 Lecture 8, 2023



Filesystem management for containers

• Hard-disks in full hardware virtualisation typically appear 
opaque to the host (but there are exceptions)

• Wasteful if VM guests’ disks are very similar, but not identical

• Situation arises when VMs deployed from common template


• VirtualBox supports cloning of disks and JIT allocation

• However the filesystem data is still opaque to the host


• Filesystems can be effective for sharing data with host

• VirtualBox shared folders used by Vagrant to mount /vagrant

7COSC349 Lecture 8, 2023



Introducing Docker and its aims

• Docker is a popular container framework

• Provides tools to unify a collection of Linux technologies

• Windows can host ‘Windows containers’—we won’t explore these


• Docker aims to make OS-level virtualisation usable

• e.g., flexible targeting both on-premises and cloud-hosted


• Docker is also an online ecosystem

• Docker can be used privately, but often uses public resources

8COSC349 Lecture 8, 2023



Docker on macOS and Windows

• Docker uses features within the Linux kernel

• So using macOS or Windows as a host first needs a Linux kernel


• Docker Toolbox (deprecated) booted Linux in VirtualBox


• Docker Desktop directly uses available host OS features

• macOS has a hypervisor framework—apps can start VMs

• … plus can use Apple’s filesystem (APFS) for Docker image storage


• Windows also has a hypervisor framework, but by default…

• … Docker Desktop uses Windows Subsystem for Linux (WSL2)

9COSC349 Lecture 8, 2023



Container disk handing—Docker images

• Vagrant boxes are typical, cached disk starting points

• Your VMs might start with Ubuntu, then shell provision software

• VMs disk images are then opaquely different to VMM, though


• Docker images—virtual hard disks—are built from layers

• Layers store sets of files and directories; identified by hash

• Layers might be: (1) Ubuntu; (2) + web server; (3) + your app.

• Layer stored as delta from parent: can be cached and shared


• Docker supports multiple different storage drivers
10COSC349 Lecture 8, 2023



Docker storage drivers

• Union filesystems: overlay multiple directories

• e.g., read-write filesystem overlaid over read-only filesystem

• Files get ‘copied up’ for writing at read-write layer on demand

• Use ‘white out’ files to ‘delete’ files from lower layers


• AUFS—Advanced multi-layered Unification Filesystem

• Unfortunately AUFS is not in the mainline Linux kernel


• overlayfs (overlay)—simpler+slower than AUFS; mainline kernel


• CoW filesystems if your host has them—BTRFS, ZFS, etc

11COSC349 Lecture 8, 2023



Sharing files between containers / host

• VMs see VirtualBox shared folders as network drives

• VMs use paravirtualised driver, e.g., VirtualBox Guest Extensions

• (Vagrant boxes are set up with such drivers preinstalled)


• Docker containers can mount host filesystems directly


• Docker bind mounts—one folder mounted twice

• Inside mount used by container; outside mount is on host


• Docker volumes—Docker sets up bind mount for you

• Preferred: host-side bind mount doesn’t need explicit config.

12COSC349 Lecture 8, 2023



Software ecosystems

• Ecosystems lift software functionality beyond tool itself:

• GitHub's impact on Git; Vagrant Cloud’s boxes vs VirtualBox


• DockerHub is a public sharing site for Docker images

• Has introduced free-tier limits: inactive images & pull counts

• Anyone can share so consider malware; use official containers


• Docker tools let you push content to DockerHub

• Also can create ‘Automated builds’; runs build in the cloud

13COSC349 Lecture 8, 2023


