
Containers
COSC349—Cloud Computing Architecture 

David Eyers



Learning objectives

• Define what a (software) container is 
• Give two benefits and two downsides of containers 

compared to full (AKA ‘hardware’) virtual machines 

• Explain how a container framework like Docker 
optimises handling filesystems for its lightweight VMs 

• Describe the role of online sites like Docker Hub in 
helping software developers use containers

2COSC349 Lecture 8, 2023



Lightweight virtualisation of software

•We have traced evolution of virtualisation 
• Complete but non-real-time simulation 
• Fast, but expensive full-machine virtualisation 
• OS-level virtualisation of userspaces 

• Most common OSs now support copy-on-write (CoW) 
filesystems that support VM snapshots & rapid cloning 

• This is all about how to run VMs though, not about how 
to efficiently manage the software within the VM

3COSC349 Lecture 8, 2023



Compare using Vagrant to using VirtualBox

• You have seen how both tools work in the lab exercises 
• VirtualBox provides a GUI (for VMs too): configure your VMs 
• Vagrant focuses instead on the software running on your VMs 

• Vagrant accelerates developer-focused use of VMs: 
• Each VM’s ‘hardware’ gets a sane default configuration 
• Vagrant box files only download once 
• SSH interface facilitates convenient developer access 
• Context-based VM selection based on working directory

4COSC349 Lecture 8, 2023



Software container frameworks, e.g. Docker

• Container is a ‘standard’ unit of OS-level virtualisation 
• Analogous to physical multimodal shipping container (ISO 668) 
• Works well in a Linux context (software licences not required) 

• Usually containers run within OS-level virtualisation 

• Attention paid to the container management API/CLI 
• i.e., App. Programming Interface & Command Line Interface 

• Container framework helps manage OS resources 
• particularly disk, RAM and network

5COSC349 Lecture 8, 2023



RAM optimisation for containers

• RAM is an expensive resource when running VMs 

• Unlike CPU, can't effectively time share: significant 
performance drop to swap data between RAM & disk 
• Would involve lots of reads and writes to disk 

• Containers help by avoiding duplication of OS kernel 
•Within VMs, containers can memory map one instance 

of each shared library for further de-duplication 
• but this breaks when multiple versions of a library are used

6COSC349 Lecture 8, 2023



Filesystem management for containers

• Hard-disks in full hardware virtualisation typically appear 
opaque to the host (but there are exceptions) 
• Wasteful if VM guests’ disks are very similar, but not identical 
• Situation arises when VMs deployed from common template 

• VirtualBox supports cloning of disks and JIT allocation 
• However the filesystem data is still opaque to the host 

• Filesystems can be effective for sharing data with host 
• VirtualBox shared folders used by Vagrant to mount /vagrant

7COSC349 Lecture 8, 2023



Introducing Docker and its aims

• Docker is a popular container framework 
• Provides tools to unify a collection of Linux technologies 
• Windows can host ‘Windows containers’—we won’t explore these 

• Docker aims to make OS-level virtualisation usable 
• e.g., flexible targeting both on-premises and cloud-hosted 

• Docker is also an online ecosystem 
• Docker can be used privately, but often uses public resources

8COSC349 Lecture 8, 2023



Docker on macOS and Windows

• Docker uses features within the Linux kernel 
• So using macOS or Windows as a host first needs a Linux kernel 

• Docker Toolbox (deprecated) booted Linux in VirtualBox 

• Docker Desktop directly uses available host OS features 
• macOS has a hypervisor framework—apps can start VMs 
• … plus can use Apple’s filesystem (APFS) for Docker image storage 

• Windows also has a hypervisor framework, but by default… 
• … Docker Desktop uses Windows Subsystem for Linux (WSL2)

9COSC349 Lecture 8, 2023



Container disk handing—Docker images

• Vagrant boxes are typical, cached disk starting points 
• Your VMs might start with Ubuntu, then shell provision software 
• VMs disk images are then opaquely different to VMM, though 

• Docker images—virtual hard disks—are built from layers 
• Layers store sets of files and directories; identified by hash 
• Layers might be: (1) Ubuntu; (2) + web server; (3) + your app. 
• Layer stored as delta from parent: can be cached and shared 

• Docker supports multiple different storage drivers
10COSC349 Lecture 8, 2023



Docker storage drivers

• Union filesystems: overlay multiple directories 
• e.g., read-write filesystem overlaid over read-only filesystem 
• Files get ‘copied up’ for writing at read-write layer on demand 
• Use ‘white out’ files to ‘delete’ files from lower layers 

• AUFS—Advanced multi-layered Unification Filesystem 
• Unfortunately AUFS is not in the mainline Linux kernel 

• overlayfs (overlay)—simpler+slower than AUFS; mainline kernel 

• CoW filesystems if your host has them—BTRFS, ZFS, etc

11COSC349 Lecture 8, 2023



Sharing files between containers / host

• VMs see VirtualBox shared folders as network drives 
• VMs use paravirtualised driver, e.g., VirtualBox Guest Extensions 
• (Vagrant boxes are set up with such drivers preinstalled) 

• Docker containers can mount host filesystems directly 

• Docker bind mounts—one folder mounted twice 
• Inside mount used by container; outside mount is on host 

• Docker volumes—Docker sets up bind mount for you 
• Preferred: host-side bind mount doesn’t need explicit config.

12COSC349 Lecture 8, 2023



Software ecosystems

• Ecosystems lift software functionality beyond tool itself: 
• GitHub's impact on Git; Vagrant Cloud’s boxes vs VirtualBox 

• DockerHub is a public sharing site for Docker images 
• Has introduced free-tier limits: inactive images & pull counts 
• Anyone can share so consider malware; use official containers 

• Docker tools let you push content to DockerHub 
• Also can create ‘Automated builds’; runs build in the cloud

13COSC349 Lecture 8, 2023


