
Operating system 
level virtualisation

COSC349—Cloud Computing Architecture

David Eyers



Learning objectives

• Enumerate multiple motivations for resource isolation


• Can define OS-level virtualisation


• Explain a benefit & a downside of OS-level virtualisation


• Appreciate that OS-level virtualisation is an old idea


• Can describe the role of Linux namespaces and 
cgroups in effecting Linux-based OS-level virtualisation

2COSC349 Lecture 7, 2023



Motivations for isolation of resources

• Typical motivation presented so far has been security

• Maintain confidentiality and integrity of separate users’ data


• Isolation can also be to support software manageability

• Applications that need specific, conflicting support software versions

• Runtime environments may allow local installation, e.g., Python ‘virtualenv’s


• Want to be able to install and cleanly remove sets of software

• Package managers in Linux distributions can provide this support


• Also to support testing within software development

• Allow test environments to be created and cleanly destroyed, rapidly

3COSC349 Lecture 7, 2023



Computing has many types of isolation

• Application-level isolation—i.e., within an application


• Threads—efficient shared memory within one process


• OS processes—each has its own ‘address space’


• Userspaces—everything unprivileged (not OS kernel)


• Virtual machines—full or paravirtualised


• Today's lecture focus: isolating separate userspaces

• AKA OS-level virtualisation (e.g., toward Docker / Kubernetes)

4COSC349 Lecture 7, 2023



Cheaper isolation if OS kernel is secure

• Trusting OS kernel security allows for cheap isolation

• i.e., cheaper than needing to run VMs containing OS kernels


•We have talked about userspace / kernel separation

• Also consider user / user separation

• Multi-user OSs assume user processes are successfully isolated


• Android embodies this, by allocating user IDs for apps

• Thus each application's processes are (assumed) isolated

5COSC349 Lecture 7, 2023



‘Old school’ chroot jails

• Unix servers have to handle users that may be malign

• Common historical example was running public FTP servers

• Anonymous users could log into those servers


• Needed to cut down what anonymous FTP users could do


• Solution: change the perceived root of the filesystem

• i.e., a ‘chroot jail’—usefully changes available executables

• Unix accesses binaries from /bin, libraries from /lib, etc.


• Changing the meaning of / mitigates many vulnerabilities

6COSC349 Lecture 7, 2023



BSD Jails—OS-level virtualisation since Y2K

• BSD Jails take resource partitioning beyond the filesystem

• Isolate process IDs, root user, network, device access 

• Also use a chroot jail to effect filesystem isolation


• Can help avoiding privilege escalation

• Successful break-in to server can’t scan filesystem for vulnerabilities, 
e.g., reading /etc/shadow and trying to crack weak passwords


• Many operations are blocked within BSD Jails, e.g.:

• loading kernel modules, changing network interfaces, mounting 

and unmounting filesystems, etc.

7COSC349 Lecture 7, 2023



Linux-vserver—Linux follows BSD in 2001

• Its isolation groups named virtual private servers (VPS)

• Organisations used to run web server in ‘colo’ data centres

• Data centres offer reliable power, internet connectivity, etc.

• You co-located your servers with others’ in the data centre


• Want to aggregate these web servers, but isolate resources


• Starting a VPS involves starting another init process

• init has process ID 1 and is the parent of all Linux processes


• Isolation rather than virtualisation of storage and NICs

• e.g., map VPS’ files into subtrees of single filesystem

8COSC349 Lecture 7, 2023



FYI: Solaris Zones—2004

• Solaris was Sun’s Unix variant. Version 10 introduced:

• Solaris ‘Zones’—i.e., separate userspaces over one kernel

• Solaris ZFS—a copy-on-write filesystem with zones support

• DTrace—in-kernel debugging (ported to BSDs including macOS)


• Solaris was, at least historically, more secure than Linux

• … it was also much more expensive than Linux

• Sun later open-sourced Solaris… then the company imploded

• Oracle still support & sell Solaris; also many open-source variants

9COSC349 Lecture 7, 2023



FYI: Solaris ZFS filesystem

• ZFS was one of the first mainstream filesystems that 
unifies file-level and block-level management

• Contrast Linux: an ext4 filesystem is stored on a disk partition

• (LVM2 allows more flexibility by ‘virtualising’ hard disk partitions)


• ZFS instead takes storage into a ‘pool’ and allocates 
block extents and filesystems from that pool

• By blurring block-level and file-level layers, ZFS can better 

optimise performance and resource usage

• Installing a new hard disk can extend pool and all filesystems

10COSC349 Lecture 7, 2023



FYI: Solaris ZFS integration with Zones

• ZFS was designed to support OS-level virtualisation

• ZFS filesystems can be mounted hierarchically

• (Commercial OSs often coordinate feature development…)


• A Zone’s filesystem root is a sub-path of host filesystem


• On disk, Zones’ data may be interleaved

• … unlike isolated partitions on a conventional hard-disk

• Advantage is sharing underlying redundancy (RAID), backup, 

deduplication and resource use across all zones’ storage

11COSC349 Lecture 7, 2023



Solaris Crossbow—virtualised networking

• Not in exam: just for extra context; hopefully interesting


•We’ve seen VirtualBox / macOS net config. complexity

• Labs involve NATing, NAT Networks, Host only networks, etc.


• Solaris Crossbow’s virtualised networking support:

• Provides all virtual machines / zones with IP presence

• Allows host’s resources (e.g., bandwidth) to be flexibly shared


• Solaris theme: flexible provisioning of host resources

• e.g., give host lots of disks; many NICs—can dynamically share

12COSC349 Lecture 7, 2023



Back to Linux… since it powers the cloud

• Multifaceted Linux features often first componentised

• Linux has a vast number of stakeholders

• Difficult to coordinate stakeholders across different Linux parts


• Effective OS-level virtualisation on Linux follows this practice

• e.g., relying on separate cgroups and namespaces components


•We’re setting the scene for Docker containers …

• … but also explaining why there are so many different 

container systems, e.g., LXC, LXD, lmctfy, Docker, OpenVZ, 
Linux-vserver, Rkt, Singularity, …

13COSC349 Lecture 7, 2023



Linux kernel namespaces (first release 2002)

• Namespaces only show processes subsets of resources

• Two namespaces can reuse the same IDs (independently)

• e.g., user IDs (UIDs), process IDs (PIDs), filenames, etc.

• e.g., all namespaces have their own root (UID 0), init (PID 1), etc.


• Or a device only appears within one namespace

• e.g., network interfaces, etc.


• Namespaces used by container frameworks (~Docker)

• Isolating containers’ namespaces increases security

• also simplifies software management (simpler resource alloc.)

14COSC349 Lecture 7, 2023



Linux cgroups (first release 2007)

• A control group (cgroup) defines parameters about 
the resource use of a set of processes, e.g.:

• limit total memory available to group of processes

• indicate non-even share of device input/output priority

• affect CPU scheduling for the group

• cgroups also can assist accounting for resource use

• croups can be applied hierarchically


• cgroups can facilitate starting / stopping processes

• important for snapshot functionality

15COSC349 Lecture 7, 2023


