
Commodity CPU
support for virtualisation

COSC349—Cloud Computing Architecture
David Eyers

Learning objectives

• Describe some challenges that old x86 CPU
architectures caused for virtualisation

• Understand the relationship between CPU protected
mode (including long mode) and CPU guest mode

• Appreciate that virtual (memory) addresses map to
physical addresses in memory blocks called pages

• Sketch potential memory performance problems
running VMs if CPU does not support nested paging

2COSC349 Lecture 5, 2023

Cloud computing relies on mass production

• Cloud data centres’ computer hardware is generic
• Contrasts with expensive servers in the past
• Distributed coordination in software counts more than server

hardware reliability, so the servers can and should be cheap

• Intel, AMD, helped facilitate x86/x64 virtualisation
• As noted earlier, x86 virtualisation presented numerous barriers
• Improved CPU support helped further spread of virtualisation:
• e.g., easier support for virtualisation of Microsoft Windows

3COSC349 Lecture 5, 2023

Lots of challenges for x86/x64 virtualisation

• Dynamic recompilation should always be able to work
• … but might be slow, and timing might actually be important
• (Important either to users, or regarding interactions with devices)

• Challenges include:
• CPU protected mode and CPU long mode (64-bit operation)
• These protected modes weren’t originally designed to be virtualised

• Hidden CPU state that VMM can’t save/restore
• VMM must save/restore this state when switching VMs

• Potential memory management inefficiency
• I/O interactions—again, designed without virtualisation in mind

4COSC349 Lecture 5, 2023

Hardware virtualisation support x86/x64

• CPU ‘protected mode’ isolates OS kernel from apps

• Just FYI—some Intel CPU history:
• Intel 8086—first IBM PC CPU—had no protected mode
• Failures in one application could take down the whole OS!

• Intel 80286 booted real mode; added protected mode
• … but transition from real to protected mode was one-way
• not widely useful: couldn’t host 8086 legacy applications

• Virtual 8086 mode introduced in Intel 80386—allowed running
8086 environments from protected mode
• e.g., multitasking MS-DOS applications on Windows 3.1!

5COSC349 Lecture 5, 2023

Intel x64 (x86-64) versus x86 behaviour

• CPU protected mode enables memory protection + rings
• Allows OSs to set up CPU to isolate kernel and userspace
• isolation in terms of CPU share, RAM access, device access, etc.

• On 64-bit processors, protected mode feels like 32-bit

• Need to enable CPU’s long mode to get 64-bit features
• In long mode, memory access uses 64-bit addresses
• (Note though that no current CPUs use 64-bit physical addresses
• … no computer can practically contain that much RAM yet)

• Also allows access to full CPU register set

6COSC349 Lecture 5, 2023

Hardware virtualisation support x86/x64

• Intel x86 protected mode itself did not virtualise well
• Intel VT-x released in 2005 within some Pentium 4 CPUs
• Subsequent CPUs include it (except some Atom processors)
• AMD released an equivalent technology in 2006

• CPUs gain a guest mode within protected mode:
• For guests (i.e., VMs), guest mode looks like protected mode
• For hosts, guest mode is lower privilege than protected mode

• CPU capability flags: vmx for Intel, svm for AMD

• More memory virtualisation support was still to come…
7COSC349 Lecture 5, 2023

Two key obstacles to virtualisation of x86

• Information about privilege level leaks to guest
• FYI: CPU code segment selector %cs reveals the current privilege

level in its two low-order bits—guest should not see this!

• Some privileged instructions do not generate traps when
run in user mode—e.g., POPF instruction
• POPF allows OS kernels to change interrupt handling flag IF

• But if OS kernel is running virtualised, it is not in protected mode
• Intel CPUs used not to generate a trap—VMM couldn’t intercept!

• CPU guest mode fixes these problems
8COSC349 Lecture 5, 2023

VMCS—Virtual Machine Control Structure

• VMCS gives fine-grained control over abilities of guests
• Often VMMs want to exert complete device control
• Sometimes VMM wants VM to directly access some hardware

• Trap to VMM if guests attempt restricted operations
• CPU explicitly records information useful to the host: e.g.,
• indicates the value to be written to a control register

• indicates value and I/O port to which data was being written

• Intel Haswell adds VMCS shadowing: nested virtualisation
9COSC349 Lecture 5, 2023

Another x86 virtualisation challenge: RAM

• How CPUs access RAM can be surprisingly complex

• FYI—CPU’s address pins indicate word to read/write
• e.g., MOS 6502 has 16 address wires, thus 64kB RAM (216 bytes)
• (even so, can use bank-switching to access more than 64kB)

• Early Intel 80x86 chips addressed offsets of ‘segments’
• Thankfully segmented memory model has died off in x64
• … so you don’t need to know about it at all

• Intel 80386 added page-based memory mapping…
10COSC349 Lecture 5, 2023

Page-based memory access

• Modern CPUs manage memory within pages
• CPU memory management unit (MMU) does the work of

translating virtual addresses into physical addresses

• Page tables describe virtual to physical mapping
• …but these page tables are stored in memory, themselves
• Page tables define process’ address space—may be many!

• Virtual addresses help OSs manage processes’ memory
• Swap parts of an address space in & out of physical memory
• Memory-mapped files: process access file using virtual address

11COSC349 Lecture 5, 2023

Not in exam! “Long mode” paged memory

• Linear address:
• with 4kB pages
• using PAE

• 40-bit physical
addresses?
• Gives 1TB RAM

• 48-bit physical
addresses now
common

12COSC349 Lecture 5, 2023—Figure by RokerHRO - eigene Arbeit / own work using Xfig., CC BY-SA 3.0

Virtualising paged memory—nested paging

• Page tables themselves are managed by guest OSs
• Older CPUs: VMM must store shadow page tables
• Deny guest OSs access to all memory pages
• Guests first accesses memory page? Triggers software in VMM:
• VMM either decides it’s a genuinely invalid page access; or

• Guest page access should have succeeded (but VMM intercepted)

• VMM software updates shadow page tables and guests’ view

• Newer CPUs: SLAT / nested paging support in hardware
• guest’s physical addresses treated as a host virtual address
• Good caching of virtual to physical address translation important!

13COSC349 Lecture 5, 2023

Translation lookaside buffer—TLB

• TLBs cache virtual to physical memory mappings
• Specifically, TLB contains recent used entries from page tables
• Locality of access means TLBs significantly boost performance

• But TLBs don’t say which address space an entry is for
• Thus, when switching OS processes, OS needs to flush the TLB
• Further, when switching VMs the VMM needs to flush the TLB

• OS manages TLB, thus need to virtualise TLB control
• TLB in x86 is supposed to be hardware-based:
• software emulation is very slow

14COSC349 Lecture 5, 2023

TLB tagging and virtualised DMA

• Since 2008 Intel and AMD have facilitated TLB tagging
• Intel Virtual Processor IDs (VPIDs) allow VMM to assign VM IDs

• Instead of flushing TLB, hardware checks tag matches
• So switching between VMs and VMM may leave TLB entries
• Significant boost to memory access speed

• Finally, I/O support in MMUs can now virtualise DMA
• PCI Passthrough—safe DMA from device to guest memory

15COSC349 Lecture 5, 2023

