
Commodity CPU 
support for virtualisation

COSC349—Cloud Computing Architecture

David Eyers



Learning objectives

• Describe some challenges that old x86 CPU 
architectures caused for virtualisation


• Understand the relationship between CPU protected 
mode (including long mode) and CPU guest mode


• Appreciate that virtual (memory) addresses map to 
physical addresses in memory blocks called pages


• Sketch potential memory performance problems 
running VMs if CPU does not support nested paging

2COSC349 Lecture 5, 2023



Cloud computing relies on mass production

• Cloud data centres’ computer hardware is generic

• Contrasts with expensive servers in the past

• Distributed coordination in software counts more than server 

hardware reliability, so the servers can and should be cheap


• Intel, AMD, helped facilitate x86/x64 virtualisation

• As noted earlier, x86 virtualisation presented numerous barriers

• Improved CPU support helped further spread of virtualisation:

• e.g., easier support for virtualisation of Microsoft Windows

3COSC349 Lecture 5, 2023



Lots of challenges for x86/x64 virtualisation

• Dynamic recompilation should always be able to work

• … but might be slow, and timing might actually be important

• (Important either to users, or regarding interactions with devices)


• Challenges include:

• CPU protected mode and CPU long mode (64-bit operation)

• These protected modes weren’t originally designed to be virtualised


• Hidden CPU state that VMM can’t save/restore

• VMM must save/restore this state when switching VMs


• Potential memory management inefficiency

• I/O interactions—again, designed without virtualisation in mind

4COSC349 Lecture 5, 2023



Hardware virtualisation support x86/x64

• CPU ‘protected mode’ isolates OS kernel from apps


• Just FYI—some Intel CPU history:

• Intel 8086—first IBM PC CPU—had no protected mode

• Failures in one application could take down the whole OS!


• Intel 80286 booted real mode; added protected mode

• … but transition from real to protected mode was one-way

• not widely useful: couldn’t host 8086 legacy applications


• Virtual 8086 mode introduced in Intel 80386—allowed running 
8086 environments from protected mode

• e.g., multitasking MS-DOS applications on Windows 3.1!

5COSC349 Lecture 5, 2023



Intel x64 (x86-64) versus x86 behaviour

• CPU protected mode enables memory protection + rings

• Allows OSs to set up CPU to isolate kernel and userspace

• isolation in terms of CPU share, RAM access, device access, etc.


• On 64-bit processors, protected mode feels like 32-bit


• Need to enable CPU’s long mode to get 64-bit features

• In long mode, memory access uses 64-bit addresses

• (Note though that no current CPUs use 64-bit physical addresses

• … no computer can practically contain that much RAM yet)


• Also allows access to full CPU register set

6COSC349 Lecture 5, 2023



Hardware virtualisation support x86/x64

• Intel x86 protected mode itself did not virtualise well

• Intel VT-x released in 2005 within some Pentium 4 CPUs

• Subsequent CPUs include it (except some Atom processors)

• AMD released an equivalent technology in 2006


• CPUs gain a guest mode within protected mode:

• For guests (i.e., VMs), guest mode looks like protected mode

• For hosts, guest mode is lower privilege than protected mode


• CPU capability flags: vmx for Intel, svm for AMD 


• More memory virtualisation support was still to come…
7COSC349 Lecture 5, 2023



Two key obstacles to virtualisation of x86

• Information about privilege level leaks to guest

• FYI: CPU code segment selector %cs reveals the current privilege 

level in its two low-order bits—guest should not see this!


• Some privileged instructions do not generate traps when 
run in user mode—e.g., POPF instruction

• POPF allows OS kernels to change interrupt handling flag IF


• But if OS kernel is running virtualised, it is not in protected mode

• Intel CPUs used not to generate a trap—VMM couldn’t intercept!


• CPU guest mode fixes these problems
8COSC349 Lecture 5, 2023



VMCS—Virtual Machine Control Structure

• VMCS gives fine-grained control over abilities of guests

• Often VMMs want to exert complete device control

• Sometimes VMM wants VM to directly access some hardware


• Trap to VMM if guests attempt restricted operations

• CPU explicitly records information useful to the host: e.g.,

• indicates the value to be written to a control register


• indicates value and I/O port to which data was being written


• Intel Haswell adds VMCS shadowing: nested virtualisation
9COSC349 Lecture 5, 2023



Another x86 virtualisation challenge: RAM

• How CPUs access RAM can be surprisingly complex


• FYI—CPU’s address pins indicate word to read/write

• e.g., MOS 6502 has 16 address wires, thus 64kB RAM (216 bytes)

• (even so, can use bank-switching to access more than 64kB)


• Early Intel 80x86 chips addressed offsets of ‘segments’

• Thankfully segmented memory model has died off in x64

• … so you don’t need to know about it at all


• Intel 80386 added page-based memory mapping… 
10COSC349 Lecture 5, 2023



Page-based memory access

• Modern CPUs manage memory within pages

• CPU memory management unit (MMU) does the work of 

translating virtual addresses into physical addresses


• Page tables describe virtual to physical mapping

• …but these page tables are stored in memory, themselves

• Page tables define process’ address space—may be many!


• Virtual addresses help OSs manage processes’ memory

• Swap parts of an address space in & out of physical memory

• Memory-mapped files: process access file using virtual address

11COSC349 Lecture 5, 2023



Not in exam! “Long mode” paged memory

• Linear address:

• with 4kB pages

• using PAE


• 40-bit physical 
addresses?

• Gives 1TB RAM


• 48-bit physical 
addresses now 
common

12COSC349 Lecture 5, 2023—Figure by RokerHRO - eigene Arbeit / own work using Xfig., CC BY-SA 3.0



Virtualising paged memory—nested paging

• Page tables themselves are managed by guest OSs

• Older CPUs: VMM must store shadow page tables

• Deny guest OSs access to all memory pages

• Guests first accesses memory page? Triggers software in VMM:

• VMM either decides it’s a genuinely invalid page access; or


• Guest page access should have succeeded (but VMM intercepted)


• VMM software updates shadow page tables and guests’ view


• Newer CPUs: SLAT / nested paging support in hardware

• guest’s physical addresses treated as a host virtual address

• Good caching of virtual to physical address translation important!

13COSC349 Lecture 5, 2023



Translation lookaside buffer—TLB

• TLBs cache virtual to physical memory mappings

• Specifically, TLB contains recent used entries from page tables

• Locality of access means TLBs significantly boost performance


• But TLBs don’t say which address space an entry is for

• Thus, when switching OS processes, OS needs to flush the TLB

• Further, when switching VMs the VMM needs to flush the TLB


• OS manages TLB, thus need to virtualise TLB control

• TLB in x86 is supposed to be hardware-based: 

• software emulation is very slow

14COSC349 Lecture 5, 2023



TLB tagging and virtualised DMA

• Since 2008 Intel and AMD have facilitated TLB tagging

• Intel Virtual Processor IDs (VPIDs) allow VMM to assign VM IDs


• Instead of flushing TLB, hardware checks tag matches

• So switching between VMs and VMM may leave TLB entries

• Significant boost to memory access speed


• Finally, I/O support in MMUs can now virtualise DMA

• PCI Passthrough—safe DMA from device to guest memory

15COSC349 Lecture 5, 2023


