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Learning objectives

• Describe some challenges that old x86 CPU 
architectures caused for virtualisation 

• Understand the relationship between CPU protected 
mode (including long mode) and CPU guest mode 

• Appreciate that virtual (memory) addresses map to 
physical addresses in memory blocks called pages 

• Sketch potential memory performance problems 
running VMs if CPU does not support nested paging
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Cloud computing relies on mass production

• Cloud data centres’ computer hardware is generic 
• Contrasts with expensive servers in the past 
• Distributed coordination in software counts more than server 

hardware reliability, so the servers can and should be cheap 

• Intel, AMD, helped facilitate x86/x64 virtualisation 
• As noted earlier, x86 virtualisation presented numerous barriers 
• Improved CPU support helped further spread of virtualisation: 
• e.g., easier support for virtualisation of Microsoft Windows
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Lots of challenges for x86/x64 virtualisation

• Dynamic recompilation should always be able to work 
• … but might be slow, and timing might actually be important 
• (Important either to users, or regarding interactions with devices) 

• Challenges include: 
• CPU protected mode and CPU long mode (64-bit operation) 
• These protected modes weren’t originally designed to be virtualised 

• Hidden CPU state that VMM can’t save/restore 
• VMM must save/restore this state when switching VMs 

• Potential memory management inefficiency 
• I/O interactions—again, designed without virtualisation in mind
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Hardware virtualisation support x86/x64

• CPU ‘protected mode’ isolates OS kernel from apps 

• Just FYI—some Intel CPU history: 
• Intel 8086—first IBM PC CPU—had no protected mode 
• Failures in one application could take down the whole OS! 

• Intel 80286 booted real mode; added protected mode 
• … but transition from real to protected mode was one-way 
• not widely useful: couldn’t host 8086 legacy applications 

• Virtual 8086 mode introduced in Intel 80386—allowed running 
8086 environments from protected mode 
• e.g., multitasking MS-DOS applications on Windows 3.1!

5COSC349 Lecture 5, 2023



Intel x64 (x86-64) versus x86 behaviour

• CPU protected mode enables memory protection + rings 
• Allows OSs to set up CPU to isolate kernel and userspace 
• isolation in terms of CPU share, RAM access, device access, etc. 

• On 64-bit processors, protected mode feels like 32-bit 

• Need to enable CPU’s long mode to get 64-bit features 
• In long mode, memory access uses 64-bit addresses 
• (Note though that no current CPUs use 64-bit physical addresses 
• … no computer can practically contain that much RAM yet) 

• Also allows access to full CPU register set
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Hardware virtualisation support x86/x64

• Intel x86 protected mode itself did not virtualise well 
• Intel VT-x released in 2005 within some Pentium 4 CPUs 
• Subsequent CPUs include it (except some Atom processors) 
• AMD released an equivalent technology in 2006 

• CPUs gain a guest mode within protected mode: 
• For guests (i.e., VMs), guest mode looks like protected mode 
• For hosts, guest mode is lower privilege than protected mode 

• CPU capability flags: vmx for Intel, svm for AMD  

• More memory virtualisation support was still to come…
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Two key obstacles to virtualisation of x86

• Information about privilege level leaks to guest 
• FYI: CPU code segment selector %cs reveals the current privilege 

level in its two low-order bits—guest should not see this! 

• Some privileged instructions do not generate traps when 
run in user mode—e.g., POPF instruction 
• POPF allows OS kernels to change interrupt handling flag IF 

• But if OS kernel is running virtualised, it is not in protected mode 
• Intel CPUs used not to generate a trap—VMM couldn’t intercept! 

• CPU guest mode fixes these problems
8COSC349 Lecture 5, 2023



VMCS—Virtual Machine Control Structure

• VMCS gives fine-grained control over abilities of guests 
• Often VMMs want to exert complete device control 
• Sometimes VMM wants VM to directly access some hardware 

• Trap to VMM if guests attempt restricted operations 
• CPU explicitly records information useful to the host: e.g., 
• indicates the value to be written to a control register 

• indicates value and I/O port to which data was being written 

• Intel Haswell adds VMCS shadowing: nested virtualisation
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Another x86 virtualisation challenge: RAM

• How CPUs access RAM can be surprisingly complex 

• FYI—CPU’s address pins indicate word to read/write 
• e.g., MOS 6502 has 16 address wires, thus 64kB RAM (216 bytes) 
• (even so, can use bank-switching to access more than 64kB) 

• Early Intel 80x86 chips addressed offsets of ‘segments’ 
• Thankfully segmented memory model has died off in x64 
• … so you don’t need to know about it at all 

• Intel 80386 added page-based memory mapping… 
10COSC349 Lecture 5, 2023



Page-based memory access

• Modern CPUs manage memory within pages 
• CPU memory management unit (MMU) does the work of 

translating virtual addresses into physical addresses 

• Page tables describe virtual to physical mapping 
• …but these page tables are stored in memory, themselves 
• Page tables define process’ address space—may be many! 

• Virtual addresses help OSs manage processes’ memory 
• Swap parts of an address space in & out of physical memory 
• Memory-mapped files: process access file using virtual address
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Not in exam! “Long mode” paged memory

• Linear address: 
• with 4kB pages 
• using PAE 

• 40-bit physical 
addresses? 
• Gives 1TB RAM 

• 48-bit physical 
addresses now 
common
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Virtualising paged memory—nested paging

• Page tables themselves are managed by guest OSs 
• Older CPUs: VMM must store shadow page tables 
• Deny guest OSs access to all memory pages 
• Guests first accesses memory page? Triggers software in VMM: 
• VMM either decides it’s a genuinely invalid page access; or 

• Guest page access should have succeeded (but VMM intercepted) 

• VMM software updates shadow page tables and guests’ view 

• Newer CPUs: SLAT / nested paging support in hardware 
• guest’s physical addresses treated as a host virtual address 
• Good caching of virtual to physical address translation important!
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Translation lookaside buffer—TLB

• TLBs cache virtual to physical memory mappings 
• Specifically, TLB contains recent used entries from page tables 
• Locality of access means TLBs significantly boost performance 

• But TLBs don’t say which address space an entry is for 
• Thus, when switching OS processes, OS needs to flush the TLB 
• Further, when switching VMs the VMM needs to flush the TLB 

• OS manages TLB, thus need to virtualise TLB control 
• TLB in x86 is supposed to be hardware-based:  
• software emulation is very slow
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TLB tagging and virtualised DMA

• Since 2008 Intel and AMD have facilitated TLB tagging 
• Intel Virtual Processor IDs (VPIDs) allow VMM to assign VM IDs 

• Instead of flushing TLB, hardware checks tag matches 
• So switching between VMs and VMM may leave TLB entries 
• Significant boost to memory access speed 

• Finally, I/O support in MMUs can now virtualise DMA 
• PCI Passthrough—safe DMA from device to guest memory
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