
Virtualisation
COSC349—Cloud Computing Architecture 

David Eyers



Learning objectives

• Define virtualisation 

• Give examples of virtualisation of many different types 
of resource (e.g., CPU, memory, disk, network, etc.) 

• Explain challenges in virtualising different resources 

• Illustrate useful capabilities of virtual machines (VMs) 

• Describe key techniques virtualisation engines use to 
virtualise x86/x64 OSs (e.g., Linux, Windows, macOS, …)

2COSC349 Lecture 3, 2023



Defining virtualisation

• Simulation and emulation often involve ‘pretending’ to 
be some different sort of hardware 
• Virtualisation is about adding a layer for manageability 
• CPUs can be virtualised, but so can many other resources 
• Virtualisation support is increasingly built into devices 

• FYI: Virtualisation first appeared in mainframe technology 
• Mainframes still used, but we’re highly unlikely to code on them 

• Mainframes typically have tight hardware+software binding

3COSC349 Lecture 3, 2023



What resources commonly get virtualised?

• CPU—isolate and contain different environments 

• Memory—many types of virtualisation abstraction 

• Storage—‘hard disk’ in a file; directory subtree into VM 

• Networks—map guest network needs onto host 

• Displays—contain guest display within host display 

• Other peripherals—e.g., USB stack in VirtualBox

4COSC349 Lecture 3, 2023



Virtual machines—VMs

• A set of virtualised resources can work together to 
provide a complete virtual machine, or VM. 
• VirtualBox effects what’s termed hardware virtualisation 
• Explore VirtualBox GUI to see what can be configured 
• CPU; RAM; storage all need to be set for a new VM 
• GUI offers configuration of many other parameters 
• Some options are quite obscure, but the documentation is good! 

• Generally, VM needs (1) CPU, (2) memory, and (3) I/O

5COSC349 Lecture 3, 2023



Some key, useful capabilities of VMs

• Ability to pause and resume VMs 
• Potential device interactions make this a non-trivial task! 

• Can snapshot VMs’ state and restore from that state 
• Handy to protect virtual resources such as hard disks 

• Ability to clone new VMs from snapshots 
• However making useful copies of machines needs further work: 
• Windows SIDs need regeneration, or uniqueness fails 

• Normally MAC addresses on network cards will be different 

•With above, can migrate VMs from one host to another

6COSC349 Lecture 3, 2023



CPU virt. must protect VMs’ OS kernels

• Need to understand what CPU does during a system call 
• Control must pass from user space to kernel space 
• Not as simple as executing a function call… 
• … but usually languages wrap syscalls in functions, e.g. printf() 

• Often involves causing a software trap / exception 
• CPU goes into protected mode (AKA supervisor mode, …) 
• CPU saves program state of the caller 
• Jumps to privileged exception handler code 
• Eventually reverses protected mode, and restores CPU state

7COSC349 Lecture 3, 2023



Fast virtualisation of CPUs

• Goal: run guest machine code mostly on the host CPU 

• Challenge: must isolate host & guests from each other 
• Guest OS kernel needs to believe it has CPU protected mode 
• … but this can’t safely be the actual CPU protected mode 

• Existing abstraction: Intel CPUs support four “rings” 
• Rings isolate resources and define levels of privilege 
• Ring 0: runs operating system kernel 
• Ring 3: runs application code 
• Other rings stay largely unused in most typical OSs

8COSC349 Lecture 3, 2023



Fast virtualisation of CPUs

• Typical Intel x86/x64 virtualisation remaps protection rings 
• Host kernel runs on host CPU ring 0 
• Guest OS kernel expects CPU ring 0 but is run on host CPU ring 1 
• Guest OS userspace is run on host CPU ring 3 
• Thus get “cheap” isolation of the desired sort… up to a point… 

• Some operations can only actually be run from ring 0 
• e.g., CPU instructions to interact with real hardware devices 
• A solution: apply just-in-time re-compilation to guest's code to 

avoid directly hitting these cases (this is expensive)
9COSC349 Lecture 3, 2023



Virtual Memory

• RAM already has many levels of abstraction 

• Physical addresses relate to RAM chips 

• Virtual addresses get mapped into physical addresses 

• Also, paging divides up memory into blocks 

• ‘Virtual memory’ or ‘paging’ in older OSs was all about 
swapping processes’ memory between RAM and disk 
• RAM / disk swapping is just one potential use of virtual memory

10COSC349 Lecture 3, 2023



Fast virtualisation of memory

• Goal: guest memory use is host memory use 

• Challenge: need to ensure protection of host memory 

• Existing abstraction: virtual addresses; memory paging 

• Solution: context switch to VM as you would a process 
• CPU helps facilitate switching processes with large RAM use 
• Prevent VM from seeing real host’s memory management 

• FYI: 32-bit versus 64-bit guests handled very differently
11COSC349 Lecture 3, 2023



Fast virtualisation of disk

• Goal: guest has manageable ‘hard disks’ 

• Challenge: can’t safely share actual host hard disk 

• Technically simple solution: guest HD is huge file on host 
• Map requests for guest HD read/write (sectors) into file on host 
• Wasteful: guest’s pointless management of non-real resources 
• Host space can be optimised to extend HD file on-demand 

• Ideally pass through capabilities from host better… 

12COSC349 Lecture 3, 2023



Fast virtualisation of network cards (NICs)

• Goal: support guest networking as directly as possible 

• Existing abstractions: plenty, including bridges, NAT, … 

• Higher-end NICs offload work from CPU 
• Checksum calculations 
• IP fragmentation handling 

• Ensure guest OS delegates functions to its (virtual) NIC 
• … since then virtualisation engine can support functions easily

13COSC349 Lecture 3, 2023



Fast virtualisation of graphics

• Goal: get highest-level requests from guest 

• Existing abstractions: e.g., OpenGL, DirectX, … 

• OpenGL allows virtualisation host to avoid emulating 
graphics hardware—can largely pass through OpenGL 
• Do not want host intercepting per-pixel operations! 
• Need to avoid graphics ‘breaking out’ of guest though 

• Alternative: no gfx. card—Use RDP or VNC+framebuffer
14COSC349 Lecture 3, 2023


