
Virtualisation
COSC349—Cloud Computing Architecture


David Eyers



Learning objectives

• Define virtualisation


• Give examples of virtualisation of many different types 
of resource (e.g., CPU, memory, disk, network, etc.)


• Explain challenges in virtualising different resources


• Illustrate useful capabilities of virtual machines (VMs)


• Describe key techniques virtualisation engines use to 
virtualise x86/x64 OSs (e.g., Linux, Windows, macOS, …)

2COSC349 Lecture 3, 2023



Defining virtualisation

• Simulation and emulation often involve ‘pretending’ to 
be some different sort of hardware

• Virtualisation is about adding a layer for manageability

• CPUs can be virtualised, but so can many other resources

• Virtualisation support is increasingly built into devices


• FYI: Virtualisation first appeared in mainframe technology

• Mainframes still used, but we’re highly unlikely to code on them


• Mainframes typically have tight hardware+software binding

3COSC349 Lecture 3, 2023



What resources commonly get virtualised?

• CPU—isolate and contain different environments


• Memory—many types of virtualisation abstraction


• Storage—‘hard disk’ in a file; directory subtree into VM


• Networks—map guest network needs onto host


• Displays—contain guest display within host display


• Other peripherals—e.g., USB stack in VirtualBox

4COSC349 Lecture 3, 2023



Virtual machines—VMs

• A set of virtualised resources can work together to 
provide a complete virtual machine, or VM.

• VirtualBox effects what’s termed hardware virtualisation

• Explore VirtualBox GUI to see what can be configured

• CPU; RAM; storage all need to be set for a new VM

• GUI offers configuration of many other parameters

• Some options are quite obscure, but the documentation is good!


• Generally, VM needs (1) CPU, (2) memory, and (3) I/O

5COSC349 Lecture 3, 2023



Some key, useful capabilities of VMs

• Ability to pause and resume VMs

• Potential device interactions make this a non-trivial task!


• Can snapshot VMs’ state and restore from that state

• Handy to protect virtual resources such as hard disks


• Ability to clone new VMs from snapshots

• However making useful copies of machines needs further work:

• Windows SIDs need regeneration, or uniqueness fails


• Normally MAC addresses on network cards will be different


•With above, can migrate VMs from one host to another

6COSC349 Lecture 3, 2023



CPU virt. must protect VMs’ OS kernels

• Need to understand what CPU does during a system call

• Control must pass from user space to kernel space

• Not as simple as executing a function call…

• … but usually languages wrap syscalls in functions, e.g. printf()


• Often involves causing a software trap / exception

• CPU goes into protected mode (AKA supervisor mode, …)

• CPU saves program state of the caller

• Jumps to privileged exception handler code

• Eventually reverses protected mode, and restores CPU state

7COSC349 Lecture 3, 2023



Fast virtualisation of CPUs

• Goal: run guest machine code mostly on the host CPU


• Challenge: must isolate host & guests from each other

• Guest OS kernel needs to believe it has CPU protected mode

• … but this can’t safely be the actual CPU protected mode


• Existing abstraction: Intel CPUs support four “rings”

• Rings isolate resources and define levels of privilege

• Ring 0: runs operating system kernel

• Ring 3: runs application code

• Other rings stay largely unused in most typical OSs

8COSC349 Lecture 3, 2023



Fast virtualisation of CPUs

• Typical Intel x86/x64 virtualisation remaps protection rings

• Host kernel runs on host CPU ring 0

• Guest OS kernel expects CPU ring 0 but is run on host CPU ring 1

• Guest OS userspace is run on host CPU ring 3

• Thus get “cheap” isolation of the desired sort… up to a point…


• Some operations can only actually be run from ring 0

• e.g., CPU instructions to interact with real hardware devices

• A solution: apply just-in-time re-compilation to guest's code to 

avoid directly hitting these cases (this is expensive)
9COSC349 Lecture 3, 2023



Virtual Memory

• RAM already has many levels of abstraction


• Physical addresses relate to RAM chips


• Virtual addresses get mapped into physical addresses


• Also, paging divides up memory into blocks


• ‘Virtual memory’ or ‘paging’ in older OSs was all about 
swapping processes’ memory between RAM and disk

• RAM / disk swapping is just one potential use of virtual memory

10COSC349 Lecture 3, 2023



Fast virtualisation of memory

• Goal: guest memory use is host memory use


• Challenge: need to ensure protection of host memory


• Existing abstraction: virtual addresses; memory paging


• Solution: context switch to VM as you would a process

• CPU helps facilitate switching processes with large RAM use

• Prevent VM from seeing real host’s memory management


• FYI: 32-bit versus 64-bit guests handled very differently
11COSC349 Lecture 3, 2023



Fast virtualisation of disk

• Goal: guest has manageable ‘hard disks’


• Challenge: can’t safely share actual host hard disk


• Technically simple solution: guest HD is huge file on host

• Map requests for guest HD read/write (sectors) into file on host

• Wasteful: guest’s pointless management of non-real resources

• Host space can be optimised to extend HD file on-demand


• Ideally pass through capabilities from host better… 

12COSC349 Lecture 3, 2023



Fast virtualisation of network cards (NICs)

• Goal: support guest networking as directly as possible


• Existing abstractions: plenty, including bridges, NAT, …


• Higher-end NICs offload work from CPU

• Checksum calculations

• IP fragmentation handling


• Ensure guest OS delegates functions to its (virtual) NIC

• … since then virtualisation engine can support functions easily

13COSC349 Lecture 3, 2023



Fast virtualisation of graphics

• Goal: get highest-level requests from guest


• Existing abstractions: e.g., OpenGL, DirectX, …


• OpenGL allows virtualisation host to avoid emulating 
graphics hardware—can largely pass through OpenGL

• Do not want host intercepting per-pixel operations!

• Need to avoid graphics ‘breaking out’ of guest though


• Alternative: no gfx. card—Use RDP or VNC+framebuffer
14COSC349 Lecture 3, 2023


