
Emulation of 
computer systems

COSC349—Cloud Computing Architecture

David Eyers

Learning objectives

• Define terms simulation, emulation and virtualisation

• Understand the meaning of terms host and guest in the
context of simulation, emulation and virtualisation

• Explain key challenges in software emulation of
computer systems

• Describe why cloud computing is reliant on an ability to
emulate (or virtualise) hardware in software

2COSC349 Lecture 2, 2023

Technical prerequisites for cloud computing

• Cloud computing has had extremely rapid growth

• Many different aspects have aligned to allow this success

• Not much time is spent looking backwards…

• But many of its fundamental technologies are old, and
have been around for far longer than the public cloud

• Virtualisation is key underlying technology

• … but we first talk about emulation

3COSC349 Lecture 2, 2023

Some key terms to contrast

• Simulation

• Running a model of some system to observe its behaviour

• Emulation

• Originally described hardware-assisted simulation

• Now used to mean a machine imitating another machine

• Virtualisation

• Adding a supervisory layer to an existing system

• These terms overlap and have shifted in use, over time
4COSC349 Lecture 2, 2023

Key cloud requirement—decoupling

• NIST: “resources requested come from a shared pool.”

• Existing server software infrastructure expects to run on

particular operating systems and hardware

• How do you run software systems like that?

• Need a mechanism to decouple OSs from hardware

• ... but computers should be deterministic machines

• ... and software can carry out work of deterministic machines

• therefore we should in theory be able to pretend to provide

the hardware, in software
5COSC349 Lecture 2, 2023

Key point: hardware in software

• Simulation: we create a software model of hardware
computer system we want to turn into software

• But simulation is often not real-time, e.g., may be very slow

• Yet we want our system to be usable like the hardware was…

• Emulation: one machine pretending to be another
type of machine, but such that it's actually usable

• In particular, it will (usually) produce a result that’s interactive!

6COSC349 Lecture 2, 2023

Non-cloud reasons to use emulation

• Note that emulation typically has a high cost:

• What's emulated will be less powerful than the emulation host

• Often is used for developing embedded systems

• Embedded target was difficult to debug on

• Lack of ease of access to hardware

• Now commonplace for use in mobile development

• Android emulation easily supports Android Runtime (ART)

• iOS simulator can avoid needing to emulate hardware:

• Apple have tight control over the i(Pad)OS software ecosystem

7COSC349 Lecture 2, 2023

Emulating the 6502 microprocessor

• A simple CPU (loved by at least Andrew & me (David))

• Three 8-bit registers: A, X and Y

• 16-bit addresses, so 64 kilobytes of addressable RAM

• Similar CPUs were used in many old personal computers:

• Apple][series; Commodore 64; etc.

• The computer design around a CPU does input/output

• 6502-based computers memory-map I/O devices—i.e., some

memory addresses are special

• e.g., address 0xC030 on Apple][s toggles the speaker cone

8COSC349 Lecture 2, 2023

Make some noise—specifics not in the exam

• Repeatedly toggle the speaker: create square-wave

• Below-left shows assembly code and explanation of lines

• Below-right is the corresponding hexadecimal machine code

9COSC349 Lecture 2, 2023

mainloop:

 LDX #$73

timingloop:

 DEX

 BNE timingloop

 BIT $C030

 JMP mainloop

300:

 A2 73

302:

 CA

 D0 FD

 2C 30 C0

 4C 00 03

A named label for jumping to.

Load 0x73 into X register.

Another named label for jumping to.

Decrement X register by one.

If X register isn’t zero, jump back.

Toggle the speaker.

Jump back to the mainloop label.

http://www.6502asm.com/beta/index.html

A dysfunctional emulator

• C-like pseudocode shown:

• variable to store program counter;

• variable to store the X register …

• Key point: this is a program
that emulates a 6502 CPU

• it “executes” 6502 machine code

• well, five opcode types, anyway …

10COSC349 Lecture 2, 2023

int8 opcode, register_x;

int16 address, pc = 0;

while(true){

 opcode = get_next(pc++);

 if(opcode==0xA2){

 register_x = get_next(pc++);

 }else if(opcode==0xCA){

 register_x -= 1;

 }else if(opcode==0xD0){

 pc += get_next(pc++);

 }else if(opcode==0x2C){

 address = get_address(pc);

 pc += 2;

 test_memory(address);

 }else if(opcode==0x4C){

 address = get_address(pc);

 pc = address;

 }

}

Challenges building emulators—timing

• The pseudocode we showed simulates the function of
the CPU opcodes… but that’s not the complete story

• Real CPUs take time to execute opcodes

• In some computers this timing is highly precise and matters!

• Emulating the precise timing as well as function, is challenging!

• 6502 code example clicks the speaker periodically

• On real Apple][computers, a perfect square wave produced

• On an Apple][emulator, the imperfections are noticeable

11COSC349 Lecture 2, 2023

https://www.scullinsteel.com/apple2/

Challenges building emulators—I/O

• A computer is a CPU and equipment for interacting

• Older computers rely on CPU control of I/O devices

• e.g., CPU may control disk drive motors—timing may be crucial

• Newer designs more likely delegate functionality

• e.g., DMA, separate controller chips within I/O devices

• Delegating functions: better separation of concerns

• ... but also increases the complexity of the systems

• e.g., everything ends up with firmware that needs bugs fixed …

12COSC349 Lecture 2, 2023

What I/O devices do we actually need?

• Old computers were exotic in their heterogeneity

• e.g., multiple hard disk interfaces in one machine (IDE+SCSI…)

• Cloud benefited from PCs becoming more regular (“boring”)

• Cloud compute node is typically just:

• CPU cores; RAM; block storage; network interface card (NIC)

• No need to support a complex range of graphics cards

• Don’t need graphics output at all, or can use NIC to ship graphics

• This makes the tenant’s “computer” easier to emulate

13COSC349 Lecture 2, 2023

Specific example of an emulator: MAME

• MAME—an emulation framework

• Commonly used to preserve vintage software’s functionality

• Currently emulates over 32,000 different individual computer

systems from the past 50 years

• Old arcade computers had complex designs with
multiple interacting CPUs, e.g., for sound / graphics

• MAME supports “ROM sets” that combine the code that each

CPU runs, and describes how these CPUs interact with each
other and the “hardware”, so that a display is shown

14COSC349 Lecture 2, 2023

https://www.mamedev.org
https://docs.mamedev.org/techspecs/m6502.html

MAME’s support of storage devices

• Storage devices in old systems may be timing-sensitive

• MAME has some support for common types of hardware

without needing to simulate chip-level timing and interactions

• MAME floppy [disk] subsystem

• Models how data is stored on physical floppy disk media

• Important this is high-fidelity, since it may be used in DRM

• MAME SCSI subsystem

• Preserve software that supports old hardware, e.g., scanners

15COSC349 Lecture 2, 2023

Specific example of an emulator: QEMU

• QEMU: open source emulation and virtualisation

• CPU hosting is emulation rather than simulation

• QEMU aims to run as much of the guest system’s code on the

actual host CPU as possible

• Nonetheless, QEMU supports multiple CPU types:

• x86; PowerPC; Arm; …—but host computer running one type

• For non-native CPUs, dynamic binary translation cross-

compiles guest machine code into code the host CPU can run

16COSC349 Lecture 2, 2023

QEMU’s support of the cloud ecosystem

• QEMU’s software components used in VirtualBox

• QEMU defines formats of disk images—e.g., qcow2

• These are files that represent, e.g., virtual hard disks

• QEMU implemented many devices / subsystems:

• PIIX3 IDE for interacting with virtual devices like hard-disks

• VGA emulator for basic graphics support

• Common network interface card emulation, e.g., R1000

• Power management through ACPI support

17COSC349 Lecture 2, 2023

